ON CERTAIN PAIRS OF SURFACES IN ORDINARY SPACE

BUCHIN SU

1. Introduction. In a recent paper ${ }^{1}$ Jesse Douglas has proposed and solved the following problem: To determine the form of the linear element of a surface in ordinary space upon which exists a family of ∞^{2} curves possessing two properties: (1) The angular excess of any triangle $A B C$ formed by curves of the family \mathcal{F} is proportional to the area of the triangle:

$$
\begin{equation*}
\mathcal{E}=A+B+C-\pi=k \subset A, \tag{1}
\end{equation*}
$$

where k denotes a constant; (2) The curves of \mathcal{F} are a linear system; that is, a point transformation exists which converts them into the straight lines of a plane. It is natural to inquire what class of surfaces we shall obtain if, instead of using property (2), we make the less specific demand that a point transformation exists which converts the curves of \mathcal{F} into the geodesics of another surface. Here we have found certain pairs of surfaces S and S_{1} which furnish the complete solution of our generalized problem. According to whether the constant k is zero or not, the linear elements of S and S_{1} take different types, whose derivation constitutes the purpose of the present paper.
2. Conditions for the property $\mathcal{E}=k \mathcal{A}$. As was shown by Douglas, ${ }^{2}$ the necessary and sufficient conditions that every curve of a family \mathcal{F} upon a surface S should have the property $\mathcal{E}=k \mathcal{A} \mathcal{A}$ can be expressed by the relation

$$
\begin{equation*}
d s / \rho=P d u+Q d v \tag{2}
\end{equation*}
$$

where $1 / \rho$ is the geodesic curvature of the curve and P, Q obey the condition.

$$
\begin{equation*}
Q_{u}-P_{v}=(k-K) W \tag{3}
\end{equation*}
$$

For the subsequent discussion it is convenient to consider both surfaces S and S_{1}, wherein the curves of \mathcal{F} upon S correspond to the geodesics of S_{1}. Let (u, v) be general coordinates of the corresponding points on these surfaces, so that the first fundamental form of S is

[^0]
[^0]: Received by the editors February 1, 1943.
 ${ }^{1}$ J. Douglas, A new special form of the linear element of a surface, Trans. Amer. Math. Soc. vol. 48 (1940) pp. 101-116.
 ${ }^{2}$ Douglas, loc. cit., p. 108.

