chapter, a large bibliography, a table of contents and an index, give flexible coverage of all items without being cumbersome. It should enjoy a long life and constant use by all who find interest in this type of work.

G. E. Schweigert

Poisson's exponential binomial limit; Table I—Individual Terms; Table II-Cumulated Terms. By E. C. Molina. New York, Van Nostrand, 1942. viii $+46+\mathrm{ii}+47 \mathrm{pp} . \$ 2.75$.
If p is the probability of a "success" in a single trial, it is well known that the probability of x "successes" in n independent trials is given by

$$
\begin{equation*}
C_{x}^{n} p^{x}(1-p)^{n-x} \tag{1}
\end{equation*}
$$

which is the $(x+1)$ st term in the expansion of the binomial $[p+(1-p)]^{n}$. If the limit of (1) is taken as $p \rightarrow 0$ and $n \rightarrow \infty$ in such a way that $n p=a$, one obtains

$$
\begin{equation*}
a^{x} e^{-a} / x! \tag{2}
\end{equation*}
$$

which is the $(x+1)$ st term of a distribution originally published by Poisson in 1837. This function not only arises as an approximation to the binomial term (1) for large n and small p, but also arises in other problems, as for example in the integration of the chi-square distribution.

Table I of the present book is a tabulation of values of (2) to six places of decimals for $a=0.001(0.001) 0.01(0.01) 0.3(0.1) 15(1) 100$ and $x=0(1) 150 ; x$, of course, being carried far enough for each given value of a to cover values of (2) to six places of decimals, not all zero. Table II gives the values of $P(c, a)=\sum_{x=c}^{\infty} a^{x} e^{-a} / x$! to six places of decimals for the same range of values of a and for $c=0(1) 153$.

The book has been lithoprinted by Edwards Brothers and is bound with a flexible paper cover.

Various parts of the tables have appeared in earlier publications. For example, L. v. Bortkiewicz (Das Gesetz der kleinen Zahlen, Leipzig, 1898) published tables of (2) to four places of decimals for $a=0.1(0.1) 10.0$ and $x=0(1) 24$. H. E. Soper (Biometrika, vol. 10 (1914)) published a table of (2) to six places of decimals for $a=0.1(0.1) 15.0$ and $x=0(1) 37$, which was reprinted in Karl Pearson's Tables for statisticians and biometricians, Cambridge, 1914. E. C. Molina (Amer. Math. Monthly, 1913) published tables of c for $P(c, a)=0.0001,0.001$ and 0.01 ; for $a=0.0001$ to 928 , and similar,

