ON HARMONIC AND ANALYTIC FUNCTIONS

FRANTIŠEK WOLF

If we study the behavior of a harmonic function on the boundary of the unit circle along an $\operatorname{arc} \alpha<\theta<\beta$, it is sometimes of advantage, if the function behaves in the simplest possible way outside this arc. This problem of isolating the singular arc can easily be solved for a harmonic function which is bounded in the unit circle. For such a function can be expressed by means of a Poisson integral

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1-r^{2}}{1-2 r \cos (\theta-\vartheta)+r^{2}} u(1, \vartheta) d \vartheta
$$

and then

$$
v(r, \theta)=\frac{1}{2 \pi} \int_{\alpha}^{\beta} \frac{1-r^{2}}{1-2 r \cos (\theta-\vartheta)+r^{2}} u(1, \vartheta) d \vartheta
$$

is known to behave in the same way as $u(r, \theta)$ in the neighborhood of the $\operatorname{arc}(\alpha, \beta)$-in fact the difference of the two functions tends uniformly to zero inside the arc-and $v(r, \theta)$ can be extended so as to make it harmonic and equal to zero on the rest of the circumference.

It is equally easy to solve the problem for a harmonic function $u(r, \theta)$ which is $O\left(1 /(1-r)^{n}\right)$ near the circumference and is, therefore, the $(n+2)$ nd derivative of a harmonic function, bounded in $r \leqq 1$.

The purpose of this paper is to show that the problem can be solved for any function harmonic in $r<1$. The result can be generalized to any domain which can be represented conformally on the unit circle.

Theorem. If $u(r, \theta)$ is a function, harmonic in the unit circle, then, given the arc $(r=1, \alpha<\theta<\beta)$, there is a function $v(r, \theta)$ harmonic in $r<1$, such that $u(r, \theta)-v(r, \theta)$ can be extended across the arc (α, β) so as to make it harmonic and zero on the arc; and $v(r, \theta)$ is harmonic and zero along the rest of the circumference.

Proof. (i) If

$$
u(r, \theta)=\sum_{1}^{\infty} r^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

we can find a nonincreasing sequence $\epsilon_{n} \rightarrow 0$, such that

$$
\begin{equation*}
\left|a_{n}\right|,\left|b_{n}\right| \leqq\left((1 / 2) e^{\epsilon_{n} n}-2\right) / n^{2} \tag{1}
\end{equation*}
$$

Received by the editors October 5, 1942.

