NEW SYSTEMS OF HYPERGEODESICS DEFINED ON A SURFACE

P. O. BELL

Introduction. Let a non-ruled surface S be referred to its asymptotic net as parametric. As a point P_{y} moves along a curve C_{λ} of S, the tangents at P_{y} to the u - and v-asymptotic curves of S describe two ruled surfaces R_{λ}^{u} and R_{λ}^{v}, respectively. Let S_{ρ} and S_{σ} denote arbitrary transversal surfaces of the congruences of u - and v-tangents of S, respectively. The purpose of the present paper is to introduce and study systems of curves of S which will be called ρ - and σ-tangeodesics.

Definition. A curve C_{λ} of S whose associated ruled surface R_{λ}^{u} intersects the surface S_{ρ} in an asymptotic curve of R_{λ}^{u} is a ρ-tangeodesic of S. Similarly, a curve C_{λ} of S whose associated ruled surface R_{λ}^{0} intersects S_{σ} in an asymptotic curve of R_{λ}^{v} is a σ-tangeodesic of S.

The ρ - and σ-tangeodesics of S at P_{y} are found to be associated in remarkable manners with the edges of Green, the directrices of Wilczynski, and the projective normal of Fubini. In fact, a new geometric characterization is obtained for each of these lines.

1. Tangeodesics. If the parametric net on a non-ruled surface S is the asymptotic net, the homogeneous projective coordinates $y^{(i)}(u, v)$ ($i=1,2,3,4$) of a general point P_{y} of S are solutions of a system of differential equations which may be assumed to be reduced to Wilczynski's canonical form

$$
\begin{equation*}
y_{u u}+2 b y_{v}+f y=0, \quad y_{v v}+2 a^{\prime} y_{u}+g y=0 \tag{1.1}
\end{equation*}
$$

The homogeneous coordinates of points ρ, σ on arbitrarily selected transversal surfaces S_{ρ} and S_{σ} of the congruences of u - and v-tangents of S are given by the vector forms

$$
\begin{equation*}
\rho=y_{u}-\beta y, \quad \sigma=y_{v}-\alpha y, \tag{1.2}
\end{equation*}
$$

wherein β, α are arbitrary analytic functions of u, v.
Let l denote the line joining ρ, σ and let l^{\prime} denote its reciprocal at P_{y}. The line l^{\prime} joins the points P_{y} and z where z is given by

$$
\begin{equation*}
z=y_{u v}-\alpha y_{u}-\beta y_{v} \tag{1.3}
\end{equation*}
$$

in which β and α are the functions in (1.2). The line l, according to Green's classification, is a line of the first kind and generates a con-

Received by the editors February 20, 1943.

