NEW SYSTEMS OF HYPERGEODESICS DEFINED ON A SURFACE

P. O. BELL

Introduction. Let a non-ruled surface S be referred to its asymptotic net as parametric. As a point P_{ν} moves along a curve C_{λ} of S, the tangents at P_{ν} to the *u*- and *v*-asymptotic curves of S describe two ruled surfaces R^{u}_{λ} and R^{v}_{λ} , respectively. Let S_{ρ} and S_{σ} denote arbitrary transversal surfaces of the congruences of *u*- and *v*-tangents of S, respectively. The purpose of the present paper is to introduce and study systems of curves of S which will be called ρ - and σ -tangeodesics.

DEFINITION. A curve C_{λ} of S whose associated ruled surface R_{λ}^{u} intersects the surface S_{ρ} in an asymptotic curve of R_{λ}^{u} is a ρ -tangeodesic of S. Similarly, a curve C_{λ} of S whose associated ruled surface R_{λ}^{v} intersects S_{σ} in an asymptotic curve of R_{λ}^{v} is a σ -tangeodesic of S.

The ρ - and σ -tangeodesics of S at P_{y} are found to be associated in remarkable manners with the edges of Green, the directrices of Wilczynski, and the projective normal of Fubini. In fact, a new geometric characterization is obtained for each of these lines.

1. Tangeodesics. If the parametric net on a non-ruled surface S is the asymptotic net, the homogeneous projective coordinates $y^{(i)}(u, v)$ (i=1, 2, 3, 4) of a general point P_v of S are solutions of a system of differential equations which may be assumed to be reduced to Wilczynski's canonical form

(1.1)
$$y_{uu} + 2by_v + fy = 0, \quad y_{vv} + 2a'y_u + gy = 0.$$

The homogeneous coordinates of points ρ , σ on arbitrarily selected transversal surfaces S_{ρ} and S_{σ} of the congruences of *u*- and *v*-tangents of *S* are given by the vector forms

(1.2)
$$\rho = y_u - \beta y, \quad \sigma = y_v - \alpha y,$$

wherein β , α are arbitrary analytic functions of u, v.

Let *l* denote the line joining ρ , σ and let *l'* denote its reciprocal at P_y . The line *l'* joins the points P_y and *z* where *z* is given by

$$(1.3) z = y_{uv} - \alpha y_u - \beta y_v$$

in which β and α are the functions in (1.2). The line *l*, according to Green's classification, is a line of the first kind and generates a con-

Received by the editors February 20, 1943.