ON FIBRE SPACES

is of course the multiplication in A_1). By the proof of Theorem 2, in order to show the equivalence of A and A_1 it is sufficient to show that $[w, w] = \gamma f$ and [w, z] = [zU, w] for every z of R. But [w, w] $= w(f^{-1}w) = (fg)(f^{-1}fg) = fg^2 = \gamma f$, and $[w, z] = w(f^{-1}z) = (fg)(f^{-1}fx)$ $= (fg)x = g(x \cdot fS) = (f \cdot xS)g = (f \cdot xS)(f^{-1}fg) = zU(f^{-1}w) = [zU, w]$. This proves the theorem.

NEWPORT NEWS, VA.

ON FIBRE SPACES. I

RALPH H. FOX

In subsequent papers I propose to investigate various properties of fibre spaces.¹ The object of the fundamental Hurewicz-Steenrod definition¹ is to state a minimum² set of readily verifiable conditions under which the covering homotopy theorem¹ holds. An apparent defect of their definition is that it is not topologically invariant. In fact, for topological space X and metrizable non-compact space B the property "X is a fibre space over B" depends on the metric of B. The object of this note is to give a topologically invariant definition of fibre space and to show that (when B is metrizable) X is a fibre space over B in this sense if and only if B has a metric in which X is a fibre space over B in the sense of Hurewicz-Steenrod. Since the definition of fibre space is controlled by the covering homotopy theorem, an essential part of my program is to give a topologically invariant definition of uniform homotopy.

Let π be a continuous mapping of a topological space X into another topological space B. Let $\Delta = \Delta(B)$ denote the diagonal set $\sum_{b \in B} (b, b)$ of the product space $B \times B$ and let $\bar{\pi}$ denote the mapping of $X \times B$ into $B \times B$ which is induced by the mapping π according to the rule $\bar{\pi}(x, b) = (\pi(x), b)$. Thus the graph G of π is the set $\bar{\pi}^{-1}(\Delta)$, and $\bar{\pi}^{-1}(U)$ is a neighborhood of G whenever U is a neighborhood of Δ .

Any neighborhood U of Δ determines uniquely a covering of B by neighborhoods $N_U(b)$ according to the rule $b' \in N_U(b)$ when $(b, b') \in U$.

1943]

Received by the editors January 13, 1943.

¹ W. Hurewicz and N. E. Steenrod, Proc. Nat. Acad. Sci. U.S.A. vol. 27 (1941) p. 61.

² How well they succeeded in this will be indicated in my next communication.