is of course the multiplication in A_{1}). By the proof of Theorem 2, in order to show the equivalence of A and A_{1} it is sufficient to show that $[w, w]=\gamma f$ and $[w, z]=[z U, w]$ for every z of R. But $[w, w]$ $=w\left(f^{-1} w\right)=(f g)\left(f^{-1} f g\right)=f g^{2}=\gamma f$, and $[w, z]=w\left(f^{-1} z\right)=(f g)\left(f^{-1} f x\right)$ $=(f g) x=g(x \cdot f S)=(f \cdot x S) g=(f \cdot x S)\left(f^{-1} f g\right)=z U\left(f^{-1} w\right)=[z U, w]$. This proves the theorem.

Newport News, Va.

ON FIBRE SPACES. I

RALPH H. FOX

In subsequent papers I propose to investigate various properties of fibre spaces. ${ }^{1}$ The object of the fundamental Hurewicz-Steenrod definition ${ }^{1}$ is to state a minimum ${ }^{2}$ set of readily verifiable conditions under which the covering homotopy theorem ${ }^{1}$ holds. An apparent defect of their definition is that it is not topologically invariant. In fact, for topological space X and metrizable non-compact space B the property " X is a fibre space over B " depends on the metric of B. The object of this note is to give a topologically invariant definition of fibre space and to show that (when B is metrizable) X is a fibre space over B in this sense if and only if B has a metric in which X is a fibre space over B in the sense of Hurewicz-Steenrod. Since the definition of fibre space is controlled by the covering homotopy theorem, an essential part of my program is to give a topologically invariant definition of uniform homotopy.

Let π be a continuous mapping of a topological space X into another topological space B. Let $\Delta=\Delta(B)$ denote the diagonal set $\sum_{b \in B}(b, b)$ of the product space $B \times B$ and let $\bar{\pi}$ denote the mapping of $X \times B$ into $B \times B$ which is induced by the mapping π according to the rule $\bar{\pi}(x, b)=(\pi(x), b)$. Thus the graph G of π is the set $\bar{\pi}^{-1}(\Delta)$, and $\bar{\pi}^{-1}(U)$ is a neighborhood of G whenever U is a neighborhood of Δ.

Any neighborhood U of Δ determines uniquely a covering of B by neighborhoods $N_{U}(b)$ according to the rule $b^{\prime} \in N_{U}(b)$ when $\left(b, b^{\prime}\right) \in U$.

[^0]
[^0]: Received by the editors January 13, 1943.
 ${ }^{1}$ W. Hurewicz and N. E. Steenrod, Proc. Nat. Acad. Sci. U.S.A. vol. 27 (1941) p. 61 .
 ${ }^{2}$ How well they succeeded in this will be indicated in my next communication.

