order of f(z) on |z| = R is $\omega' > \omega$, there either exist at least two points of order ω' on this circle or the singularity of order ω' is non-Euchsian. By means of an extension

on this circle or the singularity of order ω' is non-Fuchsian. By means of an extension of Mandelbrojt's method for finding the singularities of an analytic function on its circle of convergence, the theorem gives a formula for the order of every pole lying outside of the convex hull of non-polar singularities of f(z), and for the order of every Fuchsian singularity on the boundary V of the convex hull, provided the singularity is not an interior point of a straight-line segment of V. (Received April 12, 1943.)

190. Harry Pollard: A new criterion for completely monotonic functions.

The Bernstein criterion for completely monotonic functions states that if (i) f(0+) exists and (ii) $(-1)^k \Delta_{\delta}^k f(x) \ge 0$ for $k \ge 0$, $\delta > 0$, x > 0, then f(x) is completely monotonic in $0 \le x < \infty$. It is established in this paper that (ii) can be weakened to $(-1)^k \Delta_{\delta k}^k f(x) \ge 0$ for a suitable sequence $\{\delta_k\}$. (Received April 10, 1943.)

191. W. J. Thron: A general theorem on convergence regions for continued fractions $b_0 + K(1/b_n)$.

Let the regions B_0 and B_1 be defined by: $r \cdot e^{i\theta} \in B_0$ if $r > (1+\epsilon) \cdot f(\theta)$, $r \cdot e^{i\theta} \in B_1$ if $r > (1+\epsilon)g(\theta)$, where ϵ is an arbitrary small positive number and the functions $f(\theta)$ and $g(\theta)$ are positive in the interval $[0, 2\pi]$. If it is required that the complements of the regions B_0 and B_1 be both convex and if $f(\theta) \cdot g(\pi - \theta) \ge 4$, then the continued fraction $b_0 + K(1/b_n)$ converges if $b_{2n} \in B_0$ and $b_{2n+1} \in B_1$, that is B_0 and B_1 are twin convergence regions for the continued fraction. The condition $f(\theta)g(\pi - \theta) \ge 4$ is a necessary condition for two regions to be twin convergence regions. (Received April 19, 1943.)

192. W. J. Thron: Convergence regions for the general continued fraction.

It is shown that the continued fraction $K(a_n/b_n)$ converges if all $a_n = r \cdot e^{i\theta}$ lie in a bounded part of the parabola $r \le a^2/2(1-\cos(\theta-2\gamma))$, and if all b_n lie in the halfplane $R(b_n e^{i\gamma}) \ge a + \epsilon$. Here a > 0 and ϵ is an arbitrary small positive number. (Received April 24, 1943.)

193. Hassler Whitney: On the extension of differentiable functions.

Let A be a bounded closed set in Euclidean space E. Suppose that for some number ω any two points of A are joined by an arc in A of length not more than ω times their distance apart. Then any function of class C^m in A which, with derivatives through the *m*th order, is sufficiently small in A, may be extended throughout E so as to be small, with its derivatives. (Received May 11, 1943.)

Geometry

194. T. C. Doyle: Tensor theory of invariants for the projective differential geometry of a curved surface.

This paper completes the explicit determination of differential invariants of all orders for a curved two dimensional surface begun by E. J. Wilczynski, *Projective differential geometry of curved surfaces (fourth memoir)*, Trans. Amer. Math. Soc. vol. 10 (1909) pp. 176-200. The Lie theory of groups serves to determine the number of exist-