order of $f(z)$ on $|z|=R$ is $\omega^{\prime}>\omega$, there either exist at least two points of order ω^{\prime} on this circle or the singularity of order ω^{\prime} is non-Fuchsian. By means of an extension of Mandelbrojt's method for finding the singularities of an analytic function on its circle of convergence, the theorem gives a formula for the order of every pole lying outside of the convex hull of non-polar singularities of $f(z)$, and for the order of every Fuchsian singularity on the boundary V of the convex hull, provided the singularity is not an interior point of a straight-line segment of V. (Received April 12, 1943.)
190. Harry Pollard: A new criterion for completely monotonic functions.

The Bernstein criterion for completely monotonic functions states that if (i) $f(0+$) exists and (ii) $(-1)^{k} \Delta_{\delta}^{k} f(x) \geqq 0$ for $k \geqq 0, \delta>0, x>0$, then $f(x)$ is completely monotonic in $0 \leqq x<\infty$. It is established in this paper that (ii) can be weakened to $(-1)^{k} \Delta_{\delta_{k}}^{k} f(x)$ $\geqq 0$ for a suitable sequence $\left\{\delta_{k}\right\}$. (Received April 10, 1943.)
191. W. J. Thron: A general theorem on convergence regions for continued fractions $b_{0}+K\left(1 / b_{n}\right)$.

Let the regions B_{0} and B_{1} be defined by: $r \cdot e^{i \theta} \in B_{0}$ if $r>(1+\epsilon) \cdot f(\theta), r \cdot e^{i \theta} \in B_{1}$ if $r>(1+\epsilon) g(\theta)$, where ϵ is an arbitrary small positive number and the functions $f(\theta)$ and $g(\theta)$ are positive in the interval $[0,2 \pi]$. If it is required that the complements of the regions B_{0} and B_{1} be both convex and if $f(\theta) \cdot g(\pi-\theta) \geqq 4$, then the continued fraction $b_{0}+K\left(1 / b_{n}\right)$ converges if $b_{2 n} \in B_{0}$ and $b_{2 n+1} \in B_{1}$, that is B_{0} and B_{1} are twin convergence regions for the continued fraction. The condition $f(\theta) g(\pi-\theta) \geqq 4$ is a necessary condition for two regions to be twin convergence regions. (Received April 19, 1943.)
192. W. J. Thron: Convergence regions for the general continued fraction.

It is shown that the continued fraction $K\left(a_{n} / b_{n}\right)$ converges if all $a_{n}=r \cdot e^{i \theta}$ lie in a bounded part of the parabola $r \leqq a^{2} / 2(1-\cos (\theta-2 \gamma))$, and if all b_{n} lie in the halfplane $R\left(b_{n} e^{i \gamma}\right) \geqq a+\epsilon$. Here $a>0$ and ϵ is an arbitrary small positive number. (Received April 24, 1943.)

193. Hassler Whitney: On the extension of differentiable functions.

Let A be a bounded closed set in Euclidean space E. Suppose that for some number ω any two points of A are joined by an arc in A of length not more than ω times their distance apart. Then any function of class C^{m} in A which, with derivatives through the m th order, is sufficiently small in A, may be extended throughout E so as to be small, with its derivatives. (Received May 11, 1943.)

Geometry

194. T. C. Doyle: Tensor theory of invariants for the projective differential geometry of a curved surface.

This paper completes the explicit determination of differential invariants of all orders for a curved two dimensional surface begun by E. J. Wilczynski, Projective differential geometry of curved surfaces (fourth memoir), Trans. Amer. Math. Soc. vol. 10 (1909) pp. 176-200. The Lie theory of groups serves to determine the number of exist-

