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Let T, ...;, be an arbitrary covariant tensor with respect to an
n-dimensional coordinate system, and let

(1) T;l...,:p = [p]T'il-"ip + < [a]Til-nip'I‘ e + [lplTip'-ip

represent the decomposition!? of T%, .. .;, into tensors of various sym-
metry types, the tensor (7%, ..., corresponding to the partition [«]
of the indices ¢; - - - 7,. The number of independent (scalar) compo-
nents of T, ...;, is n?; and if ¢, denotes the number of components
of (T4, .. ipy then
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For p=2, 3, 4, J. A. Schouten? has obtained expressions for the c,'s
in terms of #; but the difficulties of his method become great for larger
values of p. The purpose of this paper is to present a method of ob-
taining ¢, in terms of # from the character table for the symmetric
group on p letters.

Associated with the immanant tensor? I{()= 4l we have de-
fined the numerical invariant »=7,, the rank? of 183, which is the
greatest integer 7 for which the tensor
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does not vanish; here (4)) =4n - - - %ap. For convenience, let us regard
183, for each (7), as a vector V; in N =#" dimensions. Then from the
above definition, it is clear that exactly 7, of the N vectors V; are
linearly independent. Since (T ¢y =17}, . . .;, may be defined by
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