THE NUMBER OF INDEPENDENT COMPONENTS OF THE TENSORS OF GIVEN SYMMETRY TYPE

RICHARD H. BRUCK AND T. L. WADE

Let $T_{i_1 \cdots i_p}$ be an arbitrary covariant tensor with respect to an *n*-dimensional coordinate system, and let

(1)
$$T_{i_1\cdots i_p} = {}_{[p]}T_{i_1\cdots i_p} + \cdots + {}_{[\alpha]}T_{i_1\cdots i_p} + \cdots + {}_{[1^p]}T_{i_1\cdots i_p}$$

represent the decomposition^{1,2} of $T_{i_1 \cdots i_p}$ into tensors of various symmetry types, the tensor $[\alpha]T_{i_1 \cdots i_p}$ corresponding to the partition $[\alpha]$ of the indices $i_1 \cdots i_p$. The number of independent (scalar) components of $T_{i_1 \cdots i_p}$ is n^p ; and if c_{α} denotes the number of components of $[\alpha]T_{i_1 \cdots i_p}$, then

(2)
$$n^p = c_{[p]} + \cdots + c_{[\alpha]} + \cdots + c_{[1^p]} = \sum c_{\alpha}.$$

For p = 2, 3, 4, J. A. Schouten³ has obtained expressions for the c_{α} 's in terms of n; but the difficulties of his method become great for larger values of p. The purpose of this paper is to present a method of obtaining c_{α} in terms of n from the character table for the symmetric group on p letters.

Associated with the immanant tensor² $I_{(j)}^{(i)} \equiv_{[\alpha]} I_{j_1...j_p}^{i_1...i_p}$ we have defined the numerical invariant $r = r_{\alpha}$, the rank⁴ of $I_{(j)}^{(i)}$, which is the greatest integer r for which the tensor

(3)
$$I_{(j_1)\cdots(j_r)}^{(i_1)\cdots(i_r)} = \begin{vmatrix} I_{(j_1)}^{(i_1)}\cdots I_{(j_r)}^{(i_1)} \\ \cdots \\ I_{(j_1)}^{(i_r)}\cdots I_{(j_r)}^{(i_r)} \end{vmatrix}$$

does not vanish; here $(i_{\lambda}) = i_{\lambda 1} \cdots i_{\lambda p}$. For convenience, let us regard $I_{(j)}^{(i)}$, for each (i), as a vector $V_{(j)}$ in $N = n^r$ dimensions. Then from the above definition, it is clear that exactly r_{α} of the N vectors $V_{(j)}$ are linearly independent. Since $[\alpha]T_{(j)} \equiv [\alpha]T_{j_1} \cdots j_n$ may be defined by

(4)
$$[\alpha] T_{(j)} = [\alpha] I_{(j)}^{(l)} T_{(l)};$$

Presented to the Society, November 22, 1941 under the title *The number of inde*pendent components of the tensor $_{[\alpha]}T_{i_1\cdots i_p}$; received by the editors November 19, 1942. ¹ H. Weyl, *The classical groups*, Princeton, 1939, chap. IV.

² T. L. Wade, Tensor algebra and Young's symmetry operators, Amer. J. Math. vol. 63 (1941) pp. 645-657.

³ J. A. Schouten, Der Ricci-Kalkul, Berlin, 1924, chap. VII.

⁴ Richard H. Bruck and T. L. Wade, *Bisymmetric tensor algebra*, II, Amer. J. Math. vol. 64 (1942) pp. 734-753. We shall refer to this paper as B.T.A.II.