THE NUMBER OF INDEPENDENT COMPONENTS OF THE TENSORS OF GIVEN SYMMETRY TYPE

RICHARD H. BRUCK AND T. L. WADE

Let $T_{i_{1}} \cdots_{i_{p}}$ be an arbitrary covariant tensor with respect to an n-dimensional coordinate system, and let

$$
\begin{equation*}
T_{i_{1} \cdots i_{p}}={ }_{[p]} T_{i_{1} \cdots i_{p}}+\cdots+{ }_{[\alpha]} T_{i_{1} \cdots i_{p}}+\cdots+{ }_{\left[1^{p}\right]} T_{i_{1} \cdots i_{p}} \tag{1}
\end{equation*}
$$

represent the decomposition ${ }^{1,2}$ of $T_{i_{1}} \cdots i_{p}$ into tensors of various symmetry types, the tensor ${ }_{[\alpha]} T_{i_{1}} \cdots i_{p}$ corresponding to the partition $[\alpha]$ of the indices $i_{1} \cdots i_{p}$. The number of independent (scalar) components of $T_{i_{1} \ldots i_{p}}$ is n^{p}; and if c_{α} denotes the number of components of ${ }_{[\alpha]} T_{i_{1}} \cdots i_{p}$, then

$$
\begin{equation*}
n^{p}=c_{[p]}+\cdots+c_{[\alpha]}+\cdots+c_{\left[1^{p}\right]}=\sum c_{\alpha} \tag{2}
\end{equation*}
$$

For $p=2,3,4$, J. A. Schouten ${ }^{3}$ has obtained expressions for the c_{α} 's in terms of n; but the difficulties of his method become great for larger values of p. The purpose of this paper is to present a method of obtaining c_{α} in terms of n from the character table for the symmetric group on p letters.

Associated with the immanant tensor ${ }^{2} I_{(j)}^{(i)} \equiv{ }_{[\alpha]} I_{j_{1} \cdots j_{p}}^{i_{1} \cdots j_{p}}$ we have defined the numerical invariant $r=r_{\alpha}$, the rank^{4} of $I_{(j)}^{(i)}$, which is the greatest integer r for which the tensor

$$
I_{\left(j_{1}\right) \cdots\left(j_{r}\right)}^{\left(i_{1}\right) \cdots\left(i_{r}\right)}=\left|\begin{array}{cccc}
I_{\left(j_{1}\right)}^{\left(i_{1}\right)} & \cdots & I_{\left(j_{r}\right)}^{\left(i_{1}\right)} \tag{3}\\
\cdot & \cdots & \\
I_{\left(j_{1}\right)}^{\left(i_{r}\right)} & \cdots & I_{\left(j_{r}\right)}^{\left(i_{r}\right)}
\end{array}\right|
$$

does not vanish; here $\left(i_{\lambda}\right)=i_{\lambda_{1}} \cdots i_{\lambda p}$. For convenience, let us regard $I_{(j)}^{(i)}$, for each (i, as a vector $V_{(j)}$ in $N=n^{r}$ dimensions. Then from the above definition, it is clear that exactly r_{α} of the N vectors $V_{(j)}$ are linearly independent. Since ${ }_{[\alpha]} T_{(j)} \equiv{ }_{[\alpha]} T_{j_{1} \ldots j_{p}}$ may be defined by

$$
\begin{equation*}
{ }_{[\alpha]} T_{(j)}={ }_{[\alpha]} I_{(j)}^{(l)} T_{(l)} ; \tag{4}
\end{equation*}
$$

[^0]
[^0]: Presented to the Society, November 22, 1941 under the title The number of independent components of the tensor ${ }_{[\alpha]} T_{i_{1}} \cdots i_{p}$; received by the editors November 19, 1942.
 ${ }^{1}$ H. Weyl, The classical groups, Princeton, 1939, chap. IV.
 ${ }^{2}$ T. L. Wade, Tensor algebra and Young's symmetry operators, Amer. J. Math. vol. 63 (1941) pp. 645-657.
 ${ }^{3}$ J. A. Schouten, Der Ricci-Kalkul, Berlin, 1924, chap. VII.
 ${ }^{4}$ Richard H. Bruck and T. L. Wade, Bisymmetric tensor algebra, II, Amer. J. Math. vol. 64 (1942) pp. 734-753. We shall refer to this paper as B.T.A.II.

