A REMARK ON ALGEBRAS OF MATRICES

WINSTON M. SCOTT

1. Introduction. Let \mathfrak{A} denote a matrix algebra, with unit element, over an algebraically closed field K. We shall assume that \mathfrak{A} is in reduced form, that is, that \mathfrak{A} is exhibited with only zeros above the main diagonal, with irreducible constituents of \mathfrak{A} in the main diagonal, and that \mathfrak{A} is expressible as the direct sum of its radical and a semisimple subalgebra which latter has nonzero components only in the irreducible constituents of \mathfrak{A} :

(1)
$$\mathfrak{A} = \begin{pmatrix} \mathfrak{C}_{11} & \cdots & \ddots \\ \mathfrak{C}_{21} & \mathfrak{C}_{22} & \cdots & \cdot \\ \vdots & \vdots & \ddots & \vdots \\ \mathfrak{C}_{t1} & \mathfrak{C}_{t2} & \cdots & \mathfrak{C}_{tt} \end{pmatrix},$$

the \mathfrak{C}_{ii} denoting irreducible constituents; further $\mathfrak{A}=\mathfrak{A}^*+\mathfrak{N}$ where \mathfrak{N} is the radical of \mathfrak{A} and

(2)
$$\mathfrak{N} = \begin{pmatrix} 0 & \cdot & \cdot & \cdot \\ \mathfrak{C}_{21} & 0 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \mathfrak{C}_{t1} & \mathfrak{C}_{t2} & \cdot & \cdot \end{pmatrix}, \qquad \mathfrak{A}^* = \begin{pmatrix} \mathfrak{C}_{11} & \cdot & \cdot & \cdot \\ 0 & \mathfrak{C}_{22} & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & \cdot & \mathfrak{C}_{tt} \end{pmatrix}.$$

As a part of \mathfrak{A} , \mathfrak{C}_{ij} forms an additive group or module of matrices upon which \mathfrak{A} , itself considered as a module, is homomorphically mapped. We shall consider \mathfrak{C}_{ij} as a matrix module with \mathfrak{A} as both left and right operator system. For a matrix A of \mathfrak{A} , we shall use the notation $C_{ij}(A)$, $(j \leq i, i = 1, 2, \dots, t)$, to denote the parts of A,

(3)
$$A = \begin{pmatrix} C_{11}(A) & \cdot & \cdots & 0 \\ C_{21}(A) & C_{22}(A) & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ C_{i1}(A) & \cdot & \cdots & C_{ii}(A) \end{pmatrix}$$

Let B be any element of \mathfrak{A} , and let B^* be the component of B in the semisimple subalgebra \mathfrak{A}^* . We define B as a left and as a right operator of $C_{ij}(A)$ by the relations below, using o to distinguish this operation from ordinary matrix multiplication

Received by the editors June 15, 1942.