A REMARK ON ALGEBRAS OF MATRICES

WINSTON M. SCOTT

1. Introduction. Let \mathfrak{A} denote a matrix algebra, with unit element, over an algebraically closed field K. We shall assume that \mathfrak{A} is in reduced form, that is, that \mathfrak{H} is exhibited with only zeros above the main diagonal, with irreducible constituents of \mathfrak{A} in the main diagonal, and that \mathfrak{H} is expressible as the direct sum of its radical and a semisimple subalgebra which latter has nonzero components only in the irreducible constituents of \mathfrak{A} :

$$
\mathfrak{H}=\left(\begin{array}{cccc}
\mathfrak{C}_{11} & \cdot & \cdots & \cdot \tag{1}\\
\mathfrak{C}_{21} & \mathfrak{C}_{22} & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\mathfrak{C}_{t 1} & \mathfrak{C}_{t 2} & \cdots & \mathfrak{C}_{t t}
\end{array}\right) \text {, }
$$

the $\mathfrak{C}_{i i}$ denoting irreducible constituents; further $\mathfrak{N}=\mathfrak{A} *+\mathfrak{N}$ where \mathfrak{N} is the radical of \mathfrak{A} and

$$
\mathfrak{N}=\left(\begin{array}{cccc}
0 & \cdot & \cdots & \cdots \tag{2}\\
\mathfrak{C}_{21} & 0 & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
\mathfrak{C}_{t 1} & \mathfrak{C}_{t 2} & \cdots & 0
\end{array}\right), \quad \mathscr{M}^{*}=\left(\begin{array}{cccc}
\mathfrak{C}_{11} & \cdot & \cdots & \cdot \\
0 & \mathfrak{C}_{22} & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
0 & 0 & \cdots & \mathfrak{C}_{t t}
\end{array}\right) .
$$

As a part of $\mathfrak{N}, \mathfrak{C}_{i j}$ forms an additive group or module of matrices upon which \mathfrak{A}, itself considered as a module, is homomorphically mapped. We shall consider $\mathfrak{C}_{i j}$ as a matrix module with \mathfrak{H} as both left and right operator system. For a matrix A of \mathfrak{A}, we shall use the notation $C_{i j}(A),(j \leqq i, i=1,2, \cdots, t)$, to denote the parts of A,

$$
A=\left(\begin{array}{cccc}
C_{11}(A) & \cdot & \cdots & 0 \tag{3}\\
C_{21}(A) & C_{22}(A) & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
C_{t 1}(A) & \cdot & \cdots & C_{t t}(A)
\end{array}\right)
$$

Let B be any element of \mathfrak{N}, and let B^{*} be the component of B in the semisimple subalgebra \mathfrak{U}^{*}. We define B as a left and as a right operator of $C_{i j}(A)$ by the relations below, using \circ to distinguish this operation from ordinary matrix multiplication

