A NOTE ON APPROXIMATION BY RATIONAL FUNCTIONS

H. KOBER

The theory of the approximation by rational functions on point sets E of the z-plane $(z=x+i y)$ has been summarized by J. L. Walsh ${ }^{1}$ who himself has proved a great number of important theorems some of which are fundamental. The results concern both the case when E is bounded and when E extends to infinity.

In the present note a L_{p}-theory $(0<p<\infty)$ will be given for the following point sets extending to infinity:
A. The real axis $-\infty<x<\infty, y=0$.
B. The half-plane $-\infty<x<\infty, 0<y<\infty$.

The only poles of the approximating functions are to lie at preassigned points whose number will be required to be as small as possible. ${ }^{2}$ We shall make use of the theory of the class \mathfrak{S}_{p} the fundamental results of which are due to E. Hille and J. D. Tamarkin; ${ }^{3}$ \mathfrak{S}_{p} is the set of functions $F(z)$ which, for $0<y<\infty$, are regular and satisfy the inequality

$$
\int_{-\infty}^{\infty}|F(x+i y)|^{p} d x \leqq M^{p} \quad \text { or } \quad|F(z)| \leqq M
$$

for $0<p<\infty$ or $p=\infty$, respectively, where M depends on F and p only. By $|f(x+i y)|_{p}$ we denote

$$
\left(\int_{-\infty}^{\infty}|f(x+i y)|^{p} d x\right)^{1 / p} \quad \text { or } \quad \underset{-\infty<x<\infty}{\text { ess. u.b. }}|f(x+i y)|
$$

for $0<p<\infty$ or $p=\infty$, respectively, and by α and β two arbitrarily fixed points in the upper or lower half-plane, respectively. We obtain the following results: ${ }^{4}$

Theorem 1. Let $0<p<\infty$ and $F(t) \in L_{p}(-\infty, \infty)$, let c be an integer greater than p^{-1} and $r_{k}(z)=(\alpha-z)^{k}(z-\beta)^{-c-k}[k=0, \pm 1, \pm 2, \cdots]$.

[^0]${ }^{1}$ Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc. Colloquium Publications, vol. 20, 1935.
${ }^{2}$ Compare Walsh, loc. cit., for example, approximation by polynomials.
${ }^{3}$ Fund. Math. vol. 25 (1935) pp. 329-352, $1 \leqq p<\infty$. For $0<p<1$ see T. Kawata, Jap. J. Math. vol. 13 (1936) pp. 421-430.
${ }^{4}$ The case $p=\infty$ of each of the results is a special case of Theorem 16, J. L. Walsh, chap. 2.

[^0]: Received by the editors June 26, 1942.

