ON SEQUENCES OF POLYNOMIALS AND THE DISTRIBUTION OF THEIR ZEROS

OTTO SZÁSZ

The first results on this subject are due to Laguerre (1882); they were generalized to a remarkable degree by Pólya and in a joint paper by Lindwart and Pólya. I quote the following theorems [2].

THEOREM 1. If a sequence of polynomials

(1)
$$P_n(z) = 1 + \sum_{1}^{n} c_{n\nu} z^{\nu} = \prod_{\nu} (1 - z z_{n\nu}^{-1})$$

converges uniformly in a circle |z| < R, and if for some integer k

(2)
$$\sum_{1}^{n} |z_{nv}|^{-k} < M, \qquad M \text{ independent of } n,$$

then the sequence (1) converges uniformly in every finite domain to an entire function F(z) which is the product of a function of genus at most k-1 and of $e^{\gamma z^k}$, γ a constant.

THEOREM 2. If the sequence (1) converges uniformly in a circle |z| < R, and if the roots $z_{n\nu}$ lie in the half-plane $\Re z \ge 0$ for each n, then the sequence (1) converges uniformly in every finite domain to an entire function F(z) which is at most of genus 2, and the roots z_{ν} of F(z) satisfy $\sum |z_{\nu}|^{-2} < \infty$.

While in Theorem 1 the assumption of uniform convergence could be replaced by convergence at infinitely many points with a finite limit point and by boundedness of the sequences: $|c_{n1}|, \dots, |c_{n \ k-1}|, n=1, 2, \dots$, the deduction of Theorem 2 required uniform convergence in |z| < R. We give here a new proof for Theorem 2 with a weaker hypothesis assuming instead of uniform convergence only convergence at infinitely many points in some finite domain and boundedness of the sequences $|c_{n1}|, |c_{n2}|$. We further generalize the assumption on the location of the zeros (following a similar remark of Weisner [5]), assuming only that the zeros of $P_n(z)$ lie in a halfplane containing the origin on its boundary, but otherwise varying with n. Finally we extend the results to certain sequences of entire functions.

Presented to the Society, April 3, 1942; received by the editors July 14, 1942.

¹ Numbers in brackets refer to the bibliography at the end of this paper.