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1. Introduction. In this paper we shall be concerned with the func
tions <t>a(z) defined by the relation 
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(1) *«(*) s 2—log#a(zt q)\ = <* / \ > , a = 0, 1, 2, 3, 

where ûa(z, q) is a Jacobi theta function and k is a positive integer. 
In the first place, we shall derive the Fourier developments which 
represent these functions in a certain strip of the complex plane; 
it will be seen that the Fourier coefficients of <t>*a(z) depend on those 
of 4>*a(z)i $ = 1 ,2 ,3 , • • • , & — 1, through a recurrence relation of order 
k. Secondly, these developments, in conjunction with certain obvious 
identities, yield, through the method of paraphrase, some general 
arithmetical formulae of a type first given by Liouville.1 Indeed, we 
recover, in a simple manner, some results given without proof by 
Liouville, which were later proved by Bell2 through the use of some
what complex identities involving a certain set of doubly periodic 
functions of the second kind. One of these results has recently been 
proved in a strictly elementary, but very ingenious way, by Uspen-
sky.8 Finally, we indicate some applications of these formulae to the 
derivation of a certain type of arithmetic and algebraic identities. 

2. The functions <f>%(z). I t should be pointed out that the case k = l9 

is implicit in §§47 and 48 of Jacobi's Fundamenta nova.4 Likewise, the 
case k = 2, has been obtained by G. D. Nichols5 through the use of 
certain results due to the present writer.6 The following is a direct 
derivation of the necessary procedure for the general case; it depends 
on a straightforward application of contour integration and the the
ory of residues. I t is convenient to treat the two functions <f>l(z) and 
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