ON THE FOURIER DEVELOPMENTS OF A CERTAIN CLASS OF THETA QUOTIENTS

M. A. BASOCO

1. Introduction. In this paper we shall be concerned with the functions $\phi_{\alpha}^{k}(z)$ defined by the relation

$$
\begin{equation*}
\phi_{\alpha}^{k}(z) \equiv\left\{\frac{d}{d z} \log \vartheta_{\alpha}(z, q)\right\}^{k}=\left\{\frac{\vartheta_{\alpha}^{\prime}(z, q)}{\vartheta_{\alpha}(z, q)}\right\}^{k}, \quad \alpha=0,1,2,3 \tag{1}
\end{equation*}
$$

where $\vartheta_{\alpha}(z, q)$ is a Jacobi theta function and k is a positive integer. In the first place, we shall derive the Fourier developments which represent these functions in a certain strip of the complex plane; it will be seen that the Fourier coefficients of $\phi_{\alpha}^{k}(z)$ depend on those of $\phi_{\alpha}^{s}(z), s=1,2,3, \cdots, k-1$, through a recurrence relation of order k. Secondly, these developments, in conjunction with certain obvious identities, yield, through the method of paraphrase, some general arithmetical formulae of a type first given by Liouville. ${ }^{1}$ Indeed, we recover, in a simple manner, some results given without proof by Liouville, which were later proved by Bell ${ }^{2}$ through the use of somewhat complex identities involving a certain set of doubly periodic functions of the second kind. One of these results has recently been proved in a strictly elementary, but very ingenious way, by Uspensky. ${ }^{3}$ Finally, we indicate some applications of these formulae to the derivation of a certain type of arithmetic and algebraic identities.
2. The functions $\phi_{\alpha}^{k}(z)$. It should be pointed out that the case $k=1$, is implicit in $\S \S 47$ and 48 of Jacobi's Fundamenta nova. ${ }^{4}$ Likewise, the case $k=2$, has been obtained by G. D. Nichols ${ }^{5}$ through the use of certain results due to the present writer. ${ }^{6}$ The following is a direct derivation of the necessary procedure for the general case; it depends on a straightforward application of contour integration and the theory of residues. It is convenient to treat the two functions $\phi_{0}^{k}(z)$ and

[^0]
[^0]: Presented to the Society, November 28, 1942; received by the editors June 29, 1942.
 ${ }^{1}$ J. Math. Pures Appl. (2) vol. 3 (1858) et seq. See, for example, vol. 3 p. 247 (H).
 ${ }^{2}$ Trans. Amer. Math. Soc. vol. 22 (1921) p. 215 formula (xiv').
 ${ }^{3}$ J. V. Uspensky and M. A. Heaslet, Elementary number theory, New York, 1939. See chap. 13 p. 462 formula (R).
 ${ }^{4}$ Jacobi, Gesammelte Werke, vol. 1 p. 187.
 ${ }^{5}$ G. D. Nichols, Tôhoku Math. J. vol. 40 (1935) pp. 252-258.
 ${ }^{6}$ M. A. Basoco, Bull. Amer. Math. Soc. vol. 38 (1932) pp. 560-568.

