ON THE FOURIER DEVELOPMENTS OF A CERTAIN CLASS OF THETA QUOTIENTS

M. A. BASOCO

1. Introduction. In this paper we shall be concerned with the functions $\phi_{\alpha}^{k}(z)$ defined by the relation

(1)
$$\phi_{\alpha}^{k}(z) \equiv \left\{\frac{d}{dz}\log\vartheta_{\alpha}(z,q)\right\}^{k} = \left\{\frac{\vartheta_{\alpha}^{\prime}(z,q)}{\vartheta_{\alpha}(z,q)}\right\}^{k}, \quad \alpha = 0, 1, 2, 3,$$

where $\vartheta_{\alpha}(z, q)$ is a Jacobi theta function and k is a positive integer. In the first place, we shall derive the Fourier developments which represent these functions in a certain strip of the complex plane; it will be seen that the Fourier coefficients of $\phi_{\alpha}^{k}(z)$ depend on those of $\phi_{\alpha}^{s}(z)$, $s = 1, 2, 3, \dots, k-1$, through a recurrence relation of order k. Secondly, these developments, in conjunction with certain obvious identities, yield, through the method of paraphrase, some general arithmetical formulae of a type first given by Liouville.¹ Indeed, we recover, in a simple manner, some results given without proof by Liouville, which were later proved by Bell² through the use of somewhat complex identities involving a certain set of doubly periodic functions of the second kind. One of these results has recently been proved in a strictly elementary, but very ingenious way, by Uspensky.³ Finally, we indicate some applications of these formulae to the derivation of a certain type of arithmetic and algebraic identities.

2. The functions $\phi_{\alpha}^{k}(z)$. It should be pointed out that the case k = 1, is implicit in §§47 and 48 of Jacobi's Fundamenta nova.⁴ Likewise, the case k = 2, has been obtained by G. D. Nichols⁵ through the use of certain results due to the present writer.⁶ The following is a direct derivation of the necessary procedure for the general case; it depends on a straightforward application of contour integration and the theory of residues. It is convenient to treat the two functions $\phi_{0}^{k}(z)$ and

Presented to the Society, November 28, 1942; received by the editors June 29, 1942.

¹ J. Math. Pures Appl. (2) vol. 3 (1858) et seq. See, for example, vol. 3 p. 247 (H).

² Trans. Amer. Math. Soc. vol. 22 (1921) p. 215 formula (xiv').

³ J. V. Uspensky and M. A. Heaslet, *Elementary number theory*, New York, 1939. See chap. 13 p. 462 formula (R).

⁴ Jacobi, Gesammelte Werke, vol. 1 p. 187.

⁵ G. D. Nichols, Tôhoku Math. J. vol. 40 (1935) pp. 252–258.

⁶ M. A. Basoco, Bull. Amer. Math. Soc. vol. 38 (1932) pp. 560-568.