SOME THEOREMS ON THE EULER ϕ-FUNCTION

N. G. GUNDERSON

The Euler ϕ-function, $\phi(m)$, denotes the number of positive integers not greater than m which are relatively prime to $m .^{1}$ It was noted by U. Scarpis ${ }^{2}$ that $n \mid \phi\left(p^{n}-1\right)$. Generalizations of this result are obtained in Theorems 9 and 10.

The first five theorems are either well known or self-evident. ${ }^{3}$
Theorem 1. If p_{1}, \cdots, p_{k} are the distinct prime factors of m, then

$$
\phi(m)=m\left(p_{1}-1\right)\left(p_{2}-1\right) \cdots\left(p_{k}-1\right) / p_{1} p_{2} \cdots p_{k}
$$

Theorem 2. If a_{1}, \cdots, a_{k} are relatively prime in pairs, then

$$
\phi\left(a_{1} \cdots a_{k}\right)=\phi\left(a_{1}\right) \cdot \phi\left(a_{2}\right) \cdots \phi\left(a_{k}\right) .
$$

Theorem 3. If w is the product of the distinct prime factors common to m and n, then

$$
\phi(m n)=w \cdot \phi(m) \cdot \phi(n) / \phi(w) .
$$

Theorem 4. If $a \mid b$, then $\phi(a) \mid \phi(b)$.
Theorem 5. If $q \mid a$ and $q \equiv 1\left(\bmod p^{\alpha}\right)$, then $p^{\alpha} \mid \phi(a)$.
Theorem 6. If p is an odd prime, $a \neq b$, and $\alpha \geqq 1$, then

$$
p^{2 \alpha-1} \mid \phi\left(a^{p^{\alpha}}+b^{p^{\alpha}}\right)
$$

The proof is by induction on α. We assume $a>b$. In the notation of Birkhoff and Vandiver, ${ }^{4} a^{p}+b^{p}=V_{2 p} / V_{p}$. By their Theorems V and I, there is a prime divisor q of $a^{p}+b^{p}$ such that $q \equiv 1(\bmod p)$ unless $p=3, a=2, b=1$. Then by Theorem $5, p \mid \phi\left(a^{p}+b^{p}\right)$, and in the exceptional case, $3 \mid \phi\left(2^{3}+1^{3}\right)$. Thus the theorem holds for $\alpha=1$, starting the induction, so we assume it for all positive integers less than α. We adopt the notation $C=A B$, where

$$
\begin{gathered}
C=a^{p^{\alpha}}+b^{p^{\alpha}}, \quad P=p^{\alpha-1}, \quad A=a^{p}+b^{p} \\
B=a^{(p-1) P}-a^{(p-2) P} \cdot b^{P}+\cdots-a^{P} \cdot b^{(p-2) P}+b^{(p-1) P} .
\end{gathered}
$$

Received by the editors June 12, 1942.
${ }^{1}$ In this discussion all letters represent positive integers. In particular, p and q represent primes.
${ }^{2}$ Period. Mat. vol. 29 (1913) p. 138.
${ }^{3}$ See, for example, L. E. Dickson, History of the theory of numbers, vol. 1, chap. 5.
${ }^{4}$ Ann. of Math. (2) vol. 5 (1903) pp. 173-180.

