TRANSFORMATIONS OF MULTIPLE FOURIER SERIES

L. B. HEDGE

1. Introduction. The object of the present paper is the study and characterization of certain classes of factor sequence transformations of multiple Fourier series. A recent moment problem solution¹ by the author and a scheme of summation of multiple Fourier series developed by Bochner² are used in the study. The results include and extend known results for single Fourier series.

2. Definitions and notation. Let n be a positive integer, fixed but arbitrary. R^n will denote the euclidean *n*-space. (x), (y), and so on will denote (x_1, x_2, \cdots, x_n) , (y_1, y_2, \cdots, y_n) , and so on, points of \mathbb{R}^n . ν , τ , *j*, *k*, *s* will be used for non-negative integers, and (ν), (τ), and so on will be used for $(\nu_1, \nu_2, \cdots, \nu_n)$, $(\tau_1, \tau_2, \cdots, \tau_n)$, lattice points of R^n . (0) will mean $(0, 0, \dots, 0)$, and (x) = (y) will mean $x_i = y_i$, $i = 1, 2, \dots, n. (k \cdot x)$ will stand for the number $k_1 x_1 + k_2 x_2 + \dots + k_n x_n$, |x| for the number $(x_1^2 + x_2^2 + \cdots + x_n^2)^{1/2}$. A, I, and λ will be used for functions defined on the lattice points of R^n , and I will be the characteristic function of the lattice points of R^n . E will be the set $E_{(x)}(-\pi \leq x_j < \pi, j=1, 2, \cdots, n)$. R and t will be used for real numbers. (x+y) will stand for $(x_1+y_1, x_2+y_2, \cdots, x_n+y_n)$, and B(n)for a real constant depending only on n. Φ will be used for a function U^{*} of bounded variation in the sense of Saks, and if $\Phi(H)$ $= \Phi_1(H) + \Phi_2(H)$ for any Borel set H with $\Phi_1(H) \ge 0 \ge \Phi_2(H)$ we will write $\int_{H} f(x) |d\Phi(E)|$ for $\int_{H} f(x) d\Phi_1(E) - \int_{H} f(x) d\Phi_2(E)$. When Φ is the Lebesgue measure function we will write $\int_{H} f(x) dx$ for

$$\int_{H} f(x) d\Phi(E).$$

We will write $f \in L$ to indicate that $\int_E f(x) dx$ exists, and $f \in C$ to indicate that f is continuous on \overline{E} and f(x) = f(x+y) for all combinations of $y_j = 0$ or 2π , $j = 1, 2, \dots, n$. A function f defined over E will be defined over R_n by the extension f(x) = f(x+y) with $y_j = 0$ or 2π , $j = 1, 2, \dots, n$.

Let

Presented to the Society, December 30,1940; received by the editors May 17, 1942.

¹ L. B. Hedge, *Moment problem for a bounded region*, Bull. Amer. Math. Soc. vol. 47 (1941) pp. 282–285. Referred to later as MP.

² S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 175-207.