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1. The problem. A quadratic form Q with coefficients in a field K, 
whose characteristic is different from 2, is usually given as a linear 
combination 
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of products [xi Xj}, where (atv) is symmetric. The sum (1) is one of 
the type 
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where the Z/s and ikf s are linear forms. In general the decomposition 
(1) is not the most economical way of writing Q as a sum of the 
type (2) in the sense that r is a minimum for Q. In treating algebras 
associated with quadratic forms E. Witt1 showed that the form Q is 
equivalent under a nonsingular linear transformation to a decom
position 
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where the last sum is a nonzero form, and r is the rank of Q. In the pres
ent paper we shall show that the minimum r for Q is r — o\ Thus this 
minimum r is determined by the rank r and the "characteristic" or of Q. 
This characteristic2 is the maximum number a of linearly independent 
linear forms Li, • • • , L„ such that the rank of Q + \ i L ? + • • • +\9Ll 
is the same as the rank of Q for all values of the X's. The form Q has 
characteristic a if and only if Q has the canonical splitting G+H, 
where G has characteristic a and rank 2<r, while H has characteristic 
0 and rank r — 2cr. The form G has a decomposition (2) with T — <T. 
The decomposition (3) is one such that the first sum is a form G of 
the type described and the other a form H. Thus it will be proved 
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