EXPANSIONS OF QUADRATIC FORMS

RUFUS OLDENBURGER

1. The problem. A quadratic form Q with coefficients in a field K, whose characteristic is different from 2, is usually given as a linear combination

$$
\begin{equation*}
\sum_{t=1}^{n} a_{i j} x_{i} x_{j} \tag{1}
\end{equation*}
$$

of products $\left\{x_{i} x_{j}\right\}$, where $\left(a_{i j}\right)$ is symmetric. The sum (1) is one of the type

$$
\begin{equation*}
\sum_{i=1}^{\tau} L_{i} M_{i}, \tag{2}
\end{equation*}
$$

where the L 's and M 's are linear forms. In general the decomposition (1) is not the most economical way of writing Q as a sum of the type (2) in the sense that τ is a minimum for Q. In treating algebras associated with quadratic forms E. Witt ${ }^{1}$ showed that the form Q is equivalent under a nonsingular linear transformation to a decomposition

$$
\begin{equation*}
\sum_{i=1}^{\sigma} y_{i} z_{i}+\sum_{i=1}^{r-2 \sigma} \nu_{i} u_{i}^{2}, \tag{3}
\end{equation*}
$$

where the last sum is a nonzero form, and r is the rank of Q. In the present paper we shall show that the minimum τ for Q is $r-\sigma$. Thus this minimum τ is determined by the rank r and the "characteristic" σ of Q. This characteristic ${ }^{2}$ is the maximum number σ of linearly independent linear forms $L_{1}, \cdots, L_{\sigma}$ such that the rank of $Q+\lambda_{1} L_{1}^{2}+\cdots+\lambda_{\sigma} L_{\sigma}^{2}$ is the same as the rank of Q for all values of the λ 's. The form Q has characteristic σ if and only if Q has the canonical splitting $G+H$, where G has characteristic σ and rank 2σ, while H has characteristic 0 and rank $r-2 \sigma$. The form G has a decomposition (2) with $\tau=\sigma$. The decomposition (3) is one such that the first sum is a form G of the type described and the other a form H. Thus it will be proved

[^0]
[^0]: Presented to the Society, April 18, 1942; received by the editors April 29, 1942.
 ${ }^{1}$ E. Witt, Theorie der Quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. vol. 176 (1937) p. 35.
 ${ }^{2}$ Rufus Oldenburger, The index of a quadratic form for an arbitrary field, Bull. Amer. Math. Soc. abstract 48-5-162.

