ON THE JOIN OF TWO COMPLEXES

C. E. CLARK

1. Introduction. In this note we point out an isomorphism between the ($r+1$)-dimensional Betti group of the join (defined below) of two complexes and a subgroup of the r-dimensional Betti group of the product of the two complexes. Using this isomorphism the Betti groups of the join are derived from those of the product in case the complexes are finite. ${ }^{1}$
2. Definition of the join (K_{1}, K_{2}) of K_{1} and K_{2}. To define the join of two complexes we first define the join (σ, τ) of a p-dimensional simplex σ and a q-dimensional simplex $\tau, p, q=0,1, \cdots$. This join is a $(p+q+1)$-dimensional simplex with a p-dimensional side associated with σ and the opposite side, which is q-dimensional, associated with τ. These sides will not be distinguished from σ and τ, respectively. Now consider the complexes K_{1} and K_{2}. Consider the set consisting of the simplexes σ_{α} of K_{1}, the simplexes τ_{β} of K_{2}, and the simplexes $\left(\sigma_{\alpha}, \tau_{\beta}\right)$. In a natural way this set forms a complex. We define the join (K_{1}, K_{2}) of K_{1} and K_{2} to be the first barycentric subdivision of this complex.
3. The rays. By the rays of (σ, τ) we mean the straight line segments each of which joins a point of σ and a point of τ. These rays cover ($\sigma, \tau)$. Also no two rays intersect except possibly at an end point. The rays of all ($\sigma_{\alpha}, \tau_{\beta}$) of (K_{1}, K_{2}) are called the rays.

Let $N_{i}, i=1,2$, be the subcomplex made up of the simplexes of (K_{1}, K_{2}) that have at least one vertex in K_{i} together with the faces of all such simplexes. It is known that each ray meets the intersection $N_{1} \cap N_{2}$ in exactly one point. ${ }^{2}$ Furthermore N_{i} and $N_{1} \cap N_{2}$ can be homotopically deformed in N_{i} along the rays into $K_{i}, i=1,2 .{ }^{2}$ It follows that $N_{1} \cap N_{2}$ and the product $K_{1} \times K_{2}$ are homeomorphic (the complexes being considered as point sets).

4. The theorem. We prove this theorem.

Theorem 1. There is an isomorphism between the ($r+1$)-dimensional

[^0]
[^0]: Received by the editors April 24, 1942.
 ${ }^{1}$ The Betti groups of the join of two finite complexes are known. They were computed by H. Freudenthal in his paper Die Bettischen Gruppen der Verbindung Zweier Polytope, Fund. Math. vol. 29 (1937) pp. 145-150.
 ${ }^{2}$ For a proof see our paper Simultaneous invariants of a complex and subcomplex, Duke Math. J. vol. 5 (1939) pp. 62-71.

