A FAMILY OF FUNCTIONS AND ITS THEORY OF CONTACT¹

J. F. RITT

Introduction. If p_1, \dots, p_n are fixed positive integers and a_1, \dots, a_n arbitrary constants, it is possible so to choose the a_i as to make the function

(1)
$$y(x) = \prod_{i=1}^{n} (x - a_i)^{p_i}$$

and its first $p_1 + \cdots + p_n - 1$ derivatives equal to zero for any single value x_0 of x. This is accomplished by taking each a_i equal to x_0 . One might say, on this basis, that the family of polynomials (1) has contact of order $p_1 + \cdots + p_n - 1$, for every value of x, with y = 0.

A more interesting situation is met when we allow the p_i to be any fixed positive numbers, not necessarily integral. In that case y(x)may be a function of many branches, with the quotient of any two branches equal to a constant of modulus unity. For our purposes it suffices to consider the value zero of x. If no a_i is zero, each branch of y(x) will be analytic at x = 0, with an expansion

$$c_0 + c_1 x + \cdots + c_s x^s + \cdots$$

where the c_i depend on the a_i . The question which we examine is: What is the greatest value of s such that, by suitably varying the a_i , the coefficients c_0, \dots, c_s can be made to approach zero simultaneously? Such a greatest value of s exists, and will be called, below, the order of contact of the family (1) with y=0. Denoting the greatest value of s by r, we shall prove that

 $(2) r \leq q+n-1$

where q is the greatest integer less than $p_1 + \cdots + p_n$. When no proper subset of the p_i has an integral sum, the equality sign holds in (2). For n = 2, (2) can be an inequality only when p_1 and p_2 are both integers. For $n \ge 3$, (2) will certainly be an inequality if some integral power of y(x) is a polynomial of degree not exceeding q+n-1; thus the order of contact of the family

Received by the editors April 9, 1942.

¹ The problem of this note was suggested by the considerations of our paper On the singular solutions of algebraic differential equations, Ann. of Math. (2) vol. 37 (1936) p. 552. See also, W. C. Strodt, Trans. Amer. Math. Soc. vol. 45 (1939) p. 276.