ing the origin, the theorem from Polya-Szegö may be applied with the $F(z)$ of the theorem taken as $A(z)$. Theorem III(b) then follows immediately.

As an application of Theorem III, let us consider the polynomial $F(z)=\sum_{k=0}^{m} a_{k} G(k+p) z^{k} \quad$ where $\quad p>0 \quad$ and $G(z)=\Gamma(z)^{-1}$ $=e^{\mu} \prod_{n=1}^{\infty}\left(1+n^{-1} z\right) e^{-z / n}$, the reciprocal of the gamma function. Since $\nu=0$ and all the zeros of $G(z+p)$ are negative, any sector $\omega_{1} \leqq \arg z \leqq \omega_{2} \leqq \pi-\omega_{1}$ containing all the zeros of $A(z)$ will also contain all the zeros of $F(z)$. For example, if $A(z)=(z-2)(z+1-i)$, then $F(z)=0.5 z^{2}-(1+i) z-2+2 i$, which has the zeros $(3.058+0.514 i)$ and $(-1.058+1.486 i)$, both thus being in the sector $0 \leqq \arg z \leqq 135^{\circ}$ containing the zeros of $A(z)$.

University of Wisconsin at Milwaukee

## ON THE EXTENSION OF A VECTOR FUNCTION SO AS TO PRESERVE A LIPSCHITZ CONDITION

F. A. VALENTINE

1. Introduction. Let $V$ be a two-dimensional Euclidean space, and let $x$ be a vector ranging over $V$. The vector function $f(x)$ is to be a vector in $V$ defined over a set $S$ of the space $V$. The Euclidean distance between any two points $x$ and $y$ in the plane is denoted by $|x-y|$. Furthermore $f(x)$ is to satisfy a Lipschitz condition, so that there exists a positive constant $K$ such that

$$
\begin{equation*}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leqq K\left|x_{1}-x_{2}\right| \tag{1}
\end{equation*}
$$

holds for all pairs $x_{1}$ and $x_{2}$ in $S$.
In event $f(x)$ is a real-valued function of a variable $x$ ranging over a set $S$ of a metric space, then the extension of the definition of $f(x)$ to any set $T \supset S$ so as to satisfy the condition (1) has been accomplished. ${ }^{1}$ The present paper establishes the result that the vector function $f(x)$ can be extended to any set $T \supset S$ so as to satisfy the Lipschitz condition with the same constant $K$. In §3 it is shown how the method used to obtain the above result can be applied to yield an extension for the case considered by McShane. ${ }^{2}$ If $f(x)$ has its

[^0]
[^0]:    Presented to the Society, April 11, 1942; received by the editors May 11, 1942.
    ${ }^{1}$ E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. vol. 40 (1934) pp. 837-842.
    ${ }^{2}$ Loc. cit.

