THE ZEROS OF CERTAIN COMPOSITE POLYNOMIALS

MORRIS MARDEN

1. Introduction. If $A_{0}(z)$ is a given m th degree polynomial and

$$
\begin{align*}
A_{k}(z)=\left(\beta_{k}-z\right) A_{k-1}^{\prime}(z)+\left(\gamma_{k}-k\right) A_{k-1}(z), \quad \begin{array}{r}
\\
\\
k=m+k \\
k=1,2, \cdots, n
\end{array} \tag{1.1}
\end{align*}
$$

we may obtain various theorems on the relative location of the zeros of $A_{0}(z)$ and $A_{n}(z)$ by the familiar method of first finding such relations for two successive $A_{k}(z)$ and then iterating the relations n times.

This method has already been employed in the study of the zeros of sequence (1.1) for the following three cases: (1) for all $k, \beta_{k}=0$ and γ_{k} is real ; ${ }^{1}$ (2) for all $k, \gamma_{k}=m+1$-a limiting case leading to Grace's theorem, ${ }^{2}$ and (3) the limiting case that for all k, as $h \rightarrow 0, h \beta_{k} \rightarrow \beta_{k}^{\prime}$ and $h\left(\gamma_{k}-k\right) \rightarrow 1$, in which case $\lim h^{k} A_{k}(z)$ is a linear combination of $A_{0}(z)$ and its first k derivatives. ${ }^{3}$

In the present article we propose to apply the method to the case that the parameters β_{k} and γ_{k} are complex numbers represented by points within certain given regions of the plane.

To calculate the nth iterate $A_{n}(z)$ in our case, let us define

$$
\begin{align*}
A(z) & \equiv A_{0}(z) \equiv a_{0}+a_{1} z+\cdots+a_{m} z^{m} \tag{1.2}\\
B(z) & \equiv\left(\beta_{1}-z\right)\left(\beta_{2}-z\right) \cdots\left(\beta_{n}-z\right) \tag{1.3}\\
& \equiv b_{0}+b_{1} z+\cdots+b_{n} z^{n} \\
C(z) & \equiv\left(\gamma_{1}-1-z\right)\left(\gamma_{2}-2-z\right) \cdots\left(\gamma_{n}-n-z\right) ; \tag{1.4}
\end{align*}
$$

$$
S(z, k, p) \equiv B(z) \sum \frac{\gamma_{j_{1}}^{(k+p)}-1}{\beta_{j_{1}}-z} \cdot \frac{\gamma_{j_{2}}^{(k+p)}-2}{\beta_{j_{2}}-z} \cdots \frac{\gamma_{j_{n-p}}^{(k+p)}-(n-p)}{\beta_{j_{n-p}}-z}
$$

where $\left[\gamma_{j}^{(r)} \equiv \gamma_{j}-r\right]$ thus $\gamma_{j}^{(r)}-j$ is a zero of $C(z+r), p<n$, and the sum is formed for all j_{i} such that $1 \leqq j_{1}<j_{2}<\cdots<j_{n-p} \leqq n$;

[^0]
[^0]: Presented to the Society, September 2, 1941; received by the editors April 8, 1942.
 ${ }^{1}$ See Laguerre, Oeuvres, Paris, 1898, vol. 1 pp. 200-202, and G. Polya, Ueber einem Satz von Laguerre, Jber. Deutschen Math. Verein. vol. 38 (1929) pp. 161-168.
 ${ }^{2}$ See Laguerre, Oeuvres, vol 1 p. 49, and G. Szegö, Bemerkungen zu einem Satz von S. H. Grace, Math. Zeit. vol. 13 (1922) pp. 28-55, p. 33.
 ${ }^{3}$ See M. Fujiwara, Eine Bemerkungen uber die elementare Theorie der algebraischen Gleichungen, Tôhoku Math. J. vol. 9 (1916) pp. 102-108; T. Takagi, Note on the algebraic equations, Proceedings of the Physico-Mathematical Society of Japan vol. 3 (1921) pp. 175-179; J. L. Walsh, On the location of the roots of polynomials, Bull. Amer. Math. Soc. vol. 30 (1924) p. 52, and M. Marden, On the zeros of the derivative of a rational function, Bull. Amer. Math. Soc. vol. 42 (1936) p. 406.

