DOUBLE COSET MATRICES AND GROUP CHARACTERS

J. S. FRAME

1. Introduction. The principal theorem of this paper extends to the characters of the irreducible representations of an intransitive group a theorem proved in an earlier paper by the author¹ for the degrees of the irreducible representations of a transitive group. A by-product of the development is the theorem that the sum of the traces of the permutations of any subgroup of a permutation group is not less than the corresponding sum for one of its cosets.

Every finite permutation group G, of order g and degree n, can be written as a group of permutation matrices. The $n \times n$ matrix $R(\gamma)$ which corresponds to the element γ of G can be written as a direct sum of submatrices $R^t(\gamma)$ of n^t dimensions corresponding to the n^t symbols of a transitive constituent C^t of G. Associated with such a transitive constituent C^t is a class of conjugate subgroups, $H^t_{\tau} = (\gamma^t_{\tau})^{-1}H^t\gamma^t_{\tau}$, each of order h^t , of which H^t shall be the subgroup leaving fixed the first symbol of C^t , and H^t_{τ} the subgroup leaving fixed the τ th symbol. If γ_a is any element of G, then in the set of h^sh^t group elements $H^s\gamma_aH^t$, each element will appear h^s_a times, where h^s_a is the order of the cross-cut of the subgroups $H^s_a = \gamma_a^{-1}H^s\gamma_a$ and H^t .

Counting each element of the set just once, we define the double coset H^{st}_{α} by the formula

$$(1.1) H_{\alpha}^{st} = H_{\gamma_{\alpha}H}^{s} / h_{\alpha}^{st}.$$

Any element from a double coset can be chosen as the defining element γ_{α} . The inverses of the elements of a double coset H_{α}^{st} themselves form a double coset which we call the inverse double coset and denote by $H_{\alpha'}^{ts}$. The product of two double cosets is a linear combination of double cosets. By considering H_{α}^{rs} as a sum of $h^r/h_{\beta'}^{rs}$ left cosets of H^s , and $H_{\beta'}^{st}$ as a sum of $h^t/h_{\beta'}^{st}$ right cosets of H^s , and noting that $H^sH^s=h^sH^s$, it is apparent that each element in the product $H_{\alpha}^{rs}H_{\beta'}^{st}$ occurs a multiple of h^s times. We define the positive integers $\mathcal{C}_{\alpha\beta\eta}^{st}$ by the formula

(1.2)
$$H_{\alpha}^{rs}H_{\beta'}^{st}/h^{s} = \sum_{\eta} c_{\alpha\beta\eta}^{rst}H_{\eta}^{rt}.$$

Presented to the Society, April 3, 1942; received by the editors April 4, 1942.

¹ J. S. Frame, *The double cosets of a finite group*, Bull. Amer. Math. Soc. vol. 47 (1941) p. 459.

² Throughout this paper the superscripts will refer to the transitive constituents.