ON THE INTERIORITY OF REAL FUNCTIONS¹

G. T. WHYBURN

If X and Y are metric spaces, a continuous transformation f(X) = Y is said to be interior at a point x of X provided that if U is any open subset of X containing x, f(x) is interior to f(U) in Y. In 1928 Kuratowski² proved a theorem essentially to the effect that if X is compact, the set G of all points y in Y such that f is interior at all points of $f^{-1}(y)$ is a G_{δ} -set dense in Y. We first establish the following related result.

THEOREM. If f(x) is a real-valued continuous function defined on a locally connected separable metric space M (therefore transforming M into a set Y of real numbers), there exists a countable subset C of Y such that f is interior at every point of $M-f^{-1}(C)$.

PROOF. For each $y \in Y$ let Y_1 and Y_2 be the sets of all numbers in Y which are less than y and greater than y, respectively. Let $M_1(y) = f^{-1}(Y_1)$, $M_2(y) = f^{-1}(Y_2)$. Now there must exist³ a countable subset C of Y such that if y is any point of Y - C,

$$f^{-1}(y) \subset \overline{M_1(y)} \cdot \overline{M_2(y)}.$$

For if not, there would exist an uncountable subset K of Y such that for any $y \in K$ there is a point $p_y \in f^{-1}(y)$ which fails to be a limit point either of $M_1(y)$ or of $M_2(y)$. Clearly we may suppose that for an uncountable subset of K_1 of K, $p_y \cdot \overline{M_1(y)} = 0$. Now since M is separable and metric, there exists a countable sequence R_1, R_2, \cdots of open sets in M such that if U is any open set in M and $p \in U$, there is an M such that $p \in R_m \subset U$. Hence, for each $y \in K_1$ there exists an integer m_y such that $p_y \subset R_{m_y}$ and $R_{m_y} \cdot M_1(y) = 0$. But if y, $y' \in K_1$, y' < y, we have $p_{y'} \subset M_1(y)$ so that $m_y \neq m_{y'}$. This is absurd, since K_1 was uncountable. Hence we have established the existence of the set C as asserted above.

We shall show that f is interior at any point x of $M-f^{-1}(C)$. To this end let U be any open set in M containing x and let y=f(x). Since M is locally connected, there exists a connected open subset V

Presented to the Society, September 8, 1939; received by the editors March 4, 1942.

¹ This paper, in slightly different form, was sent to the editors of Fundamenta Mathematicae in June, 1939.

² See Fundamentae Mathematicae, vol. 11 (1926), p. 176.

³ This could be established also with the aid of a lemma of Zarankiewicz. See Fundamenta Mathematicae, vol. 12 (1928), p. 119.