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This gives
Aop—1 = (Z —_ 1)2,

Aop = (2 - 1)2 = d2n~—1,

and it is easily seen that all ¢, lie on the boundary of the parabola.
The theorem is now completely proved.
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A TABLE OF COEFFICIENTS FOR NUMERICAL
DIFFERENTIATION
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The following table lists the coefficients 4,,s for m=1, 2, - .-, 20
and s=m, - - -, 20 in Markoff’s formula for the mth derivative in
terms of advancing differences, namely

n—1
wmf(m (x) = Z (= 1)m+sd, Asf(x) + (— 1)mFrwnd,,  f0(E).
In this formula w is the tabular interval and
Apo=(=1)"rsmB®, /s(s—m)!

and BY, is the (s —m)th Bernoulli number of the sth order.
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1 The results reported here were obtained in the course of the work done by the
Mathematical Tables Project, Work Projects Administration, New York City.



