ON VALUE REGIONS OF CONTINUED FRACTIONS

WALTER LEIGHTON AND W. J. THRON

The results of this paper are contained in the following theorem.
Theorem 1. If the elements a_{1}, a_{2}, \cdots of the continued fraction

$$
\begin{equation*}
1+\frac{a_{1}}{1}+\frac{a_{2}}{1}+\cdots \tag{1}
\end{equation*}
$$

lie in the parabola

$$
\begin{equation*}
\rho \leqq \frac{2 d(1-d)}{1-\cos \theta}, \quad 1 / 2 \leqq d<1 \tag{2}
\end{equation*}
$$

then the approximants of the continued fraction (1) lie in the hyperbolic region

$$
\begin{equation*}
R>\frac{2 d(1-d)}{1-2 d+\cos \phi}, \quad-\beta<\phi<\beta \tag{3}
\end{equation*}
$$

where $\beta=\operatorname{arc} \cos (2 d-1)$. If z is any value on the boundary of the region (3), there exists one and only one continued fraction of the form (1), with elements in the parabola (2), converging to z, namely: ${ }^{1}$

$$
\begin{equation*}
1+\frac{a}{1}+\frac{\bar{a}}{1}+\frac{a}{1}+\cdots \tag{4}
\end{equation*}
$$

where $a=(z-1) \bar{z}$ is a value on the boundary of the parabola (2).
For the case $d=1 / 2$, Scott and Wall [3] determined the value region of the approximants and Paydon [1] established the uniqueness property of (4) for that case.

A convergence criterion due to Scott and Wall [2] insures the convergence of the continued fraction (1) if in addition to the conditions of Theorem 1 it is required that the series $\sum\left|b_{n}\right|$ diverges, where $b_{1}=1 / a_{1}, b_{n+1}=1 / a_{n+1} b_{n}$. The value of such a continued fraction must lie in the closure of the region (3). Finally it follows from Theorem 1 that all values in the region (3) are assumed by a continued fraction of the form (4). The following result is now seen to be a consequence of Theorem 1.

[^0]
[^0]: Presented to the Society, April 11, 1942; received by the editors December 7, 1941, and, in revised form, March 27, 1942.
 ${ }^{1}$ Here and elsewhere in the paper a bar over a number means the complex conjugate of the number.

