ON AN INEQUALITY OF SEIDEL AND WALSH

LYNN H. LOOMIS

Introduction. In a recent paper¹ Seidel and Walsh introduced the following concepts.

Let R be a Riemann surface (configuration) lying over the w-plane, and let C_p be a simply-connected region of R having the following properties:

- (a) C_p contains precisely p points (counted according to branch-point multiplicity) lying over some point of the w-plane.
- (b) C_p lies over the circle $|w-w_0| < r$, and the boundary of C_p lies over the circumference $|w-w_0| = r$.

It follows that C_p contains precisely p points lying over every point of $|w-w_0| < r$, and in particular, p points \bar{w}_i lying over w_0 . Seidel and Walsh name such a region a p-sheeted circle with centers \bar{w}_i and radius r. Given a point \bar{w}_0 of R, let r_p be the radius of the largest p-sheeted circle in R with center \bar{w}_0 ; if none exists, let $r_p = 0$. We then define the radius of p-valence of R at \bar{w}_0 , $D_p(\bar{w}_0)$, as the maximum of the r_n for $n \leq p$.

Let $w=f(z)=a_1z+\cdots+a_pz^p+a_{p+1}z^{p+1}+\cdots$ be analytic in the unit circle |z|<1 with |f(z)|< M, and let the Riemann surface R be the image of |z|<1 under w=f(z). Let \bar{w}_0 be the image of z=0; \bar{w}_0 lies over w=0. Seidel and Walsh establish the following relation between the first p coefficients of f(z) and the radius of p-valence, $D_p(\bar{w}_0)$, of R at \bar{w}_0 .

There exist two constants, λ_p depending only on p, and Λ_p depending on p and M, such that

(1)
$$\lambda_p D_p(\bar{w}_0) \leq \sum_{n=1}^p |a_n| \leq \Lambda_p [D_p(\bar{w}_0)]^{2^{-p}}.$$

Seidel and Walsh find for Λ_p the value

$$\Lambda_p = 24 p M^r, \qquad r = 1 - 2^{-p}.$$

In this note we prove the following two statements concerning the inequalities (1).

A. The exponent 2^{-p} may be replaced by 1/(p+1) and this exponent is the best possible (for $D_p \rightarrow 0$).

Received by the editors February 24, 1942.

¹ W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Transactions of this Society, vol. 52 (1942), pp. 129-216.