ON AN INEQUALITY OF SEIDEL AND WALSH

LYNN H. LOOMIS
Introduction. In a recent paper ${ }^{1}$ Seidel and Walsh introduced the following concepts.

Let R be a Riemann surface (configuration) lying over the w-plane, and let C_{p} be a simply-connected region of R having the following properties:
(a) C_{p} contains precisely p points (counted according to branchpoint multiplicity) lying over some point of the w-plane.
(b) C_{p} lies over the circle $\left|w-w_{0}\right|<r$, and the boundary of C_{p} lies over the circumference $\left|w-w_{0}\right|=r$.

It follows that C_{p} contains precisely p points lying over every point of $\left|w-w_{0}\right|<r$, and in particular, p points \bar{w}_{i} lying over w_{0}. Seidel and Walsh name such a region a p-sheeted circle with centers \bar{w}_{i} and radius r. Given a point \bar{w}_{0} of R, let r_{p} be the radius of the largest p-sheeted circle in R with center \bar{w}_{0}; if none exists, let $r_{p}=0$. We then define the radius of p-valence of R at $\bar{w}_{0}, D_{p}\left(\bar{w}_{0}\right)$, as the maximum of the r_{n} for $n \leqq p$.

Let $w=f(z)=a_{1} z+\cdots+a_{p} z^{p}+a_{p+1} z^{p+1}+\cdots$ be analytic in the unit circle $|z|<1$ with $|f(z)|<M$, and let the Riemann surface R be the image of $|z|<1$ under $w=f(z)$. Let \bar{w}_{0} be the image of $z=0$; \bar{w}_{0} lies over $w=0$. Seidel and Walsh establish the following relation between the first p coefficients of $f(z)$ and the radius of p-valence, $D_{p}\left(\bar{w}_{0}\right)$, of R at \bar{w}_{0}.

There exist two constants, λ_{p} depending only on p, and Λ_{p} depending on p and M, such that

$$
\begin{equation*}
\lambda_{p} D_{p}\left(\bar{w}_{0}\right) \leqq \sum_{n=1}^{p}\left|a_{n}\right| \leqq \Lambda_{p}\left[D_{p}\left(\bar{w}_{0}\right)\right]^{2^{-p}} \tag{1}
\end{equation*}
$$

Seidel and Walsh find for Λ_{p} the value

$$
\Lambda_{p}=24 p M^{r}, \quad r=1-2^{-p}
$$

In this note we prove the following two statements concerning the inequalities (1).
A. The exponent 2^{-p} may be replaced by $1 /(p+1)$ and this exponent is the best possible (for $\left.D_{p} \rightarrow 0\right)$.

[^0]
[^0]: Received by the editors February 24, 1942.
 ${ }^{1}$ W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Transactions of this Society, vol. 52 (1942), pp. 129-216.

