ON AN INEQUALITY OF SEIDEL AND WALSH
LYNN H. LOOMIS

Introduction. In a recent paper! Seidel and Walsh introduced the
following concepts.

Let R be a Riemann surface (configuration) lying over the w-plane,
and let C, be a simply-connected region of R having the following
properties:

(a) C, contains precisely p points (counted according to branch-
point multiplicity) lying over some point of the w-plane.

(b) C, lies over the circle |‘w—wo| <r, and the boundary of C, lies
over the circumference Iw—wol =7,

It follows that C, contains precisely p points lying over every point
of |w——w0| <7, and in particular, p points @; lying over w,. Seidel
and Walsh name such a region a p-sheeted circle with centers w; and
radius r. Given a point @, of R, let 7, be the radius of the largest
p-sheeted circle in R with center @,; if none exists, let ,=0. We then
define the radius of p-valence of R at @,, D,(W,), as the maximum of
the 7, for n =< p.

Let w=f(2) =a1z+ - - - +a,2?+ap412?T 4 - - - be analytic in the
unit circle |z| <1 with |f(z)| <M, and let the Riemann surface R be
the image of |z, <1 under w=f(z). Let w, be the image of 2=0;
W, lies over w=0. Seidel and Walsh establish the following relation
between the first p coefficients of f(z) and the radius of p-valence,
D, (@), of R at w,.

T'here exist two constants, N, depending only on p, and A, depending
on p and M, such that

(1) MDy@) S 3| 4l < A,D,(@0) ]

Seidel and Walsh find for A, the value

A, = 24pMr, r=1-— 27
In this note we prove the following two statements concerning the
inequalities (1).

A. The exponent 2—? may be replaced by 1/(p+1) and this exponent
1s the best possible (for D,—0).
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