THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA

A. A. ALBERT

1. Introduction. An algebra \mathfrak{A} is said to be nilpotent of index r if every product of r quantities of \mathfrak{A} is zero, and is said to be a zero algebra if it is nilpotent of index two. It is said to be simple if it is not a zero algebra and its only nonzero (two-sided) ideal is itself, and is said to be semi-simple if it is a direct sum of simple algebras.

The radical of an associative algebra \mathfrak{A} is a nilpotent ideal \mathfrak{N} of \mathfrak{A} which is maximal in the strong sense in that it contains¹ all nilpotent ideals of \mathfrak{A} . No such ideal exists in an arbitrary non-associative algebra, and so the radical of such an algebra has never² been defined. However the property that $\mathfrak{A} - \mathfrak{N}$ be semi-simple is really the vital one and we shall define the concept of radical here by proving this theorem.

THEOREM 1. Every algebra \mathfrak{A} which is homomorphic to a semi-simple algebra has an ideal \mathfrak{N} , which we shall call the **radical** of \mathfrak{A} , such that $\mathfrak{A} - \mathfrak{N}$ is semi-simple, \mathfrak{N} is contained in every ideal \mathfrak{B} of \mathfrak{A} for which $\mathfrak{A} - \mathfrak{B}$ is semi-simple.

The hypothesis that \mathfrak{A} shall be homomorphic to a semi-simple algebra is equivalent to the property that there shall exist an ideal \mathfrak{B} in \mathfrak{A} such that $\mathfrak{A} - \mathfrak{B}$ shall be semi-simple. It is a necessary assumption even in the associative case, since \mathfrak{A} may be nilpotent and then $\mathfrak{A} = \mathfrak{R}$, every $\mathfrak{A} - \mathfrak{B}$ is nilpotent. Moreover it is satisfied by every algebra \mathfrak{A} with a unity quantity. We shall, nevertheless, carry our study a step farther in that we shall define explicitly a certain proper ideal \mathfrak{R} for every algebra \mathfrak{A} such that either \mathfrak{R} is the radical of \mathfrak{A} in the sense above or \mathfrak{A} is not homomorphic to a semi-simple algebra. In the latter case $\mathfrak{A} - \mathfrak{R}$ is a zero algebra.

Our results will be consequences of the remarkable fact³ that the major structural properties of any non-associative algebra \mathfrak{A} over \mathfrak{F} are determined by almost the same properties of a certain related associative algebra $T(\mathfrak{A})$. We define the right multiplications R_x and the

Presented to the Society April 18, 1942; received by the editors February 11, 1942.

¹ For these results see my *Structure of Algebras*, American Mathematical Society Colloquium Publications, vol. 24, 1939, chap. 2.

 $^{^2}$ For the case of alternative algebras see M. Zorn, Alternative rings and related questions I: Existence of the radical, Annals of Mathematics, (2), vol. 42 (1941), pp. 676–686.

³ Cf. my Non-associative algebras I: Fundamental concepts and isotopy, Annals of Mathematics, (2), vol. 43 (1942), pp. 685-708. See also N. Jacobson, A note on non-associative algebras, Duke Mathematical Journal, vol. 3 (1937), pp. 544-548.