This seems to be the generalization of the classical result that a necessary and sufficient condition for the polar components of a matrix A to be commutative is that A be a normal matrix.

QUEENS COLLEGE

REMARKS ON REGULARITY OF METHODS OF SUMMATION

G. E. FORSYTHE AND A. C. SCHAEFFER

A doubly infinite matrix¹ (a_{mn}) $(m, n = 1, 2, \dots)$ is said to be regular, if for every sequence $x = \{x_n\}$ with limit x' the corresponding sums $y_m = \sum_{n=1}^{\infty} a_{mn} x_n$ exist for $m = 1, 2, \dots$, and if $\lim_{m \to \infty} y_m = x'$. An apparently more inclusive definition of regularity is that for each sequence x with limit x' the sums defining y_m shall exist for all $m \ge m_0(x)$ and $\lim_{m \to \infty} y_m = x'$. Tamarkin² has shown that (a_{mn}) is regular in the latter sense if and only if there exists an m_1 independent of x such that the matrix (a_{mn}) $(m \ge m_1, n \ge 1)$ is regular in the former sense. Using point set theory in the Banach space (c), he proves a theorem³ from which follows the result just mentioned. This note presents an elementary proof of that theorem and discusses some related topics.

THEOREM 1. Suppose the doubly infinite matrix (a_{mn}) has the property that for each sequence $x = \{x_n\}$ with limit 0 there exists an $m_0 = m_0(x)$ such that for all $m \ge m_0(x)$, $u_m = \lim \sup_{k \to \infty} \sup_{n=1}^k |a_{mn}x_n| < \infty$. Then there exists an m_1 such that $\sum_{n=1}^{\infty} |a_{mn}| < \infty$ for all $m \ge m_1$.

If in addition $\lim_{m\to\infty} u_m = 0$ for each sequence x with limit 0, it will follow⁴ that there exists an N such that $\sum_{n=1}^{\infty} |a_{mn}| \leq N < \infty$, for all $m \geq m_1$.

To prove Theorem 1, suppose there were an infinite sequence $m_1 < m_2 < \cdots$ such that $\sum_{n=1}^{\infty} |a_{mn}| = \infty$ for $m \in \{m_{\nu}\}$. Let x_1, \cdots, x_{k_1} be chosen with unit moduli and with amplitudes such that

1942]

Presented to the Society, April 11, 1942 under the title A remark on Toeplitz matrices; received by the editors January 22, 1942.

¹ In this note a_{mn} , x_n and x' denote finite complex numbers.

² J. D. Tamarkin, On the notion of regularity of methods of summation of infinite series, this Bulletin, vol. 41 (1935), pp. 241-243.

³ J. D. Tamarkin, loc. cit., p. 242, lines 1-6.

⁴ See, for example, I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, Journal für die reine und angewandte Mathematik, vol. 151 (1921), pp. 79-111; p. 85, Theorem 4.