This seems to be the generalization of the classical result that a necessary and sufficient condition for the polar components of a matrix A to be commutative is that A be a normal matrix.

Queens College

REMARKS ON REGULARITY OF METHODS OF SUMMATION

G. E. FORSYTHE AND A. C. SCHAEFFER

A doubly infinite matrix ${ }^{1}\left(a_{m n}\right)(m, n=1,2, \cdots)$ is said to be regular, if for every sequence $x=\left\{x_{n}\right\}$ with limit x^{\prime} the corresponding sums $y_{m}=\sum_{n=1}^{\infty} a_{m n} x_{n}$ exist for $m=1,2, \cdots$, and if $\lim _{m \rightarrow \infty} y_{m}=x^{\prime}$. An apparently more inclusive definition of regularity is that for each sequence x with limit x^{\prime} the sums defining y_{m} shall exist for all $m \geqq m_{0}(x)$ and $\lim _{m \rightarrow \infty} y_{m}=x^{\prime}$. Tamarkin ${ }^{2}$ has shown that $\left(a_{m n}\right)$ is regular in the latter sense if and only if there exists an m_{1} independent of x such that the matrix ($a_{m n}$) ($m \geqq m_{1}, n \geqq 1$) is regular in the former sense. Using point set theory in the Banach space (c), he proves a theorem ${ }^{3}$ from which follows the result just mentioned. This note presents an elementary proof of that theorem and discusses some related topics.

Theorem 1. Suppose the doubly infinite matrix $\left(a_{m n}\right)$ has the property that for each sequence $x=\left\{x_{n}\right\}$ with limit 0 there exists an $m_{0}=m_{0}(x)$ such that for all $m \geqq m_{0}(x), u_{m}=\lim \sup _{k \rightarrow \infty}\left|\sum_{n=1}^{k} a_{m n} x_{n}\right|<\infty$. Then there exists an m_{1} such that $\sum_{n=1}^{\infty}\left|a_{m n}\right|<\infty$ for all $m \geqq m_{1}$.

If in addition $\lim _{m \rightarrow \infty} u_{m}=0$ for each sequence x with limit 0 , it will follow ${ }^{4}$ that there exists an N such that $\sum_{n=1}^{\infty}\left|a_{m n}\right| \leqq N<\infty$, for all $m \geqq m_{1}$.

To prove Theorem 1, suppose there were an infinite sequence $m_{1}<m_{2}<\cdots$ such that $\sum_{n=1}^{\infty}\left|a_{m n}\right|=\infty$ for $m \in\left\{m_{\nu}\right\}$. Let $x_{1}, \cdots, x_{k_{1}}$ be chosen with unit moduli and with amplitudes such that

[^0]
[^0]: Presented to the Society, April 11, 1942 under the title A remark on Toeplitz matrices; received by the editors January 22, 1942.
 ${ }^{1}$ In this note $a_{m n}, x_{n}$ and x^{\prime} denote finite complex numbers.
 ${ }^{2}$ J. D. Tamarkin, On the notion of regularity of methods of summation of infinite series, this Bulletin, vol. 41 (1935), pp. 241-243.
 ${ }^{3}$ J. D. Tamarkin, loc. cit., p. 242, lines 1-6.
 ${ }^{4}$ See, for example, I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, Journal für die reine und angewandte Mathematik, vol. 151 (1921), pp. 79-111; p. 85, Theorem 4.

