A GENERALIZATION OF THE POLAR REPRESENTATION OF NONSINGULAR MATRICES

JOHN WILLIAMSON

1. Introduction. If A is a square matrix with elements in the complex number field, then

(1) A = PU,

where P is a positive definite hermitian matrix and U is a unitary matrix.¹ In this polar representation of the matrix A, as it is called, the two matrices P and U are unique. Since the matrix P is positive definite and nonsingular, it has the same signature as the identity matrix E while the unitary matrix U is a conjunctive automorph of E. From (1) we may deduce a somewhat similar representation of A in terms of a positive definite hermitian matrix and a conjunctive automorph, not of E, but of any nonsingular positive definite hermitian matrix.

Let H be a nonsingular hermitian matrix which is positive definite, so that there exists a nonsingular matrix Q satisfying

$$Q^{-1}H(Q^{-1})^* = E,$$

where Q^* is the conjugate transposed of Q. If $B = Q^{-1}AQ$ and B = PUis the polar representation of B, then $A = QPQ^{-1}QUQ^{-1} = DR$, where $D = QPQ^{-1}$ and $R = QUQ^{-1}$. Since $DH = QPQ^{-1}QQ^* = QPQ^*$, DH is hermitian with the same signature as H. Further $RHR^* = QUQ^{-1}QQ^*$ $\cdot (Q^{-1})^*U^*Q^* = QQ^* = H$. Hence we have this result as an analogue of the polar representation (1) of A.

RESULT (1). If H is any nonsingular positive definite hermitian matrix and A is a nonsingular matrix, then

where DH is a positive definite hermitian matrix and $RHR^* = H$.

If $H=H^{-1}$, A=DR=DHHR and, since $HRH(HR)^*=H^3=H$, $A=P_1R_1$, where P_1 is a positive definite hermitian matrix and $R_1HR_1^*=H$. Therefore we have as a second analogue of (1) the following result.

Received by the editors October 13, 1941.

¹ L. Autonne, Sur les groupes linéaires, réels et orthogonaux, Bulletin de la Société Mathématique de France, vol. 30 (1902), pp. 121–134. A. Wintner and F. D. Murnaghan, On a polar representation of non-singular matrices, Proceedings of the National Academy of Sciences, vol. 17 (1931), pp. 676–678.