ON THE LEAST SOLUTION OF PELL'S EQUATION

LOO-KENG HUA
Let x_{0}, y_{0} be the least positive solution of Pell's equation

$$
x^{2}-d y^{2}=4
$$

where d is a positive integer, not a square, congruent to 0 or $1(\bmod 4)$. Let $\epsilon=\left(x_{0}+d^{1 / 2} y_{0}\right) / 2$. It was proved by Schur ${ }^{1}$ that

$$
\begin{equation*}
\epsilon<d^{d / 2} \tag{1}
\end{equation*}
$$

or, more precisely,

$$
\begin{equation*}
\log \epsilon<d^{1 / 2}((1 / 2) \log d+(1 / 2) \log \log d+1) \tag{2}
\end{equation*}
$$

He deduced (1) from (2) by the property that

$$
d^{1 / 2}((1 / 2) \log d+(1 / 2) \log \log d+1)<d^{1 / 2} \log d
$$

for $d>244.69 \cdots$, and, for $d \leqq 244$, (1) is established by direct computation. It is the object of the present note to establish a slightly better result that

$$
\begin{equation*}
\log \epsilon<d^{1 / 2}((1 / 2) \log d+1) \tag{3}
\end{equation*}
$$

Thus (1) follows immediately without any calculation. The method used is that described in the preceding paper.

Let ($d \mid r$) be Kronecker's symbol. (We extend the definition to include negative values of r by the relation $\left(d \mid r_{1}\right)=\left(d \mid r_{2}\right)$ for $\left.r_{1} \equiv r_{2}(\bmod d).\right)$

Let f denote the fundamental discriminant related to d, that is,

$$
d=m^{2} f
$$

where f is not divisible by a square of odd prime and is either odd, or congruent to 8 or congruent to $12(\bmod 16)$.

Lemma 1. For $d>0$, we have

$$
\left(\frac{d}{r}\right)=\left(\frac{d}{-r}\right)
$$

Proof. Landau, Vorlesungen über Zahlentheorie, vol. 1, Theorem 101.

Lemma 2. We have
Received by the editors December 3, 1941.
${ }^{1}$ Göttingen Nachrichter, 1918, pp. 30-36.

