ANALYSIS

255. C. R. Adams and A. P. Morse: On approximating certain integrals by sums.

For $f \in L(E)$, B a measurable subset of E, $0 < |B| = \text{measure } (B) < \infty$, let $\mathfrak{M}_{Bf} = \int_{Bf} / |B|$. As B varies, let $\mathfrak{R}(f)$ represent the set of values of \mathfrak{M}_{Bf} ; and let ϕ be a function whose domain includes $\Re(f)$. For $0 < \delta \leq \infty$ let F be an arbitrary setpartition of E into disjoint measurable subsets each with diameter less than δ ; and let the aggregate of all such partitions be denoted by $\Gamma_{\delta}(E)$. What conditions on f and ϕ will insure the (finite) existence of $\int_E \phi[f(x)] dx$ and of $\lim_{\delta \to 0} \inf_{F \in \Gamma_{\delta}(E)}$ $\sum_{B \in F} \phi[\mathfrak{M}_{B}f]|B|$, $\lim_{\delta \to 0} \sup_{F \in \Gamma_{\delta}(E)} \sum_{B \in F} \phi[M_{B}f]|B|$ and their equality? For ϕ continuous, a necessary and sufficient condition is found. The hypothesis of continuity on ϕ cannot be dispensed with. "Sampling" can be allowed in the sum (see Adams and Morse, Random sampling in the evaluation of a Lebesgue integral, this Bulletin, vol. 45 (1939), pp. 442-447). A sufficient condition, often useful for testing, is found in terms of the existence of a convex dominant for $|\phi|$; such a convex dominant need not exist, but a condition is determined under which it does. Applications are made to functions f which are of bounded variation or are absolutely continuous in a certain generalized sense involving ϕ . Some new results in the general theory of functions of sets are included. (Received July 14, 1942.)

256. G. E. Albert: Criteria for the closure of systems of orthogonal functions.

Let the system F of functions $f_n(x)$, $n = 0, 1, 2, \cdots$, be orthonormal on the interval (a, b). For any fixed point t in (a, b) let $g_t(x)$ denote the function which is equal to unity on (a, t) and zero on (t, b). Let $s_n(x)$ denote the partial sum of the generalized Fourier series with respect to F for the function $g_t(x)$. Define the function $\sigma_n(t)$ which, for each t in (a, b), is equal to $s_n(t)$. A necessary and sufficient condition that the system F be closed in the class of functions having integrable (Riemann or Lebesgue) squares on (a, b) is: $\lim_n \int_a^b |1 - 2\sigma_n(t)| dt = 0$. A sufficient condition is that $\lim_n \int_a^b \{1 - 2\sigma_n(t)\}^2 dt = 0$. The verification of the latter criterion for the trigonometric system F is a matter of elementary calculus. Both criteria are extended to systems F orthogonal with respect to a positive weight function; in such cases the interval (a, b) may be infinite. The criteria stated follow easily from a theorem due to Vitali (Rendiconti dei Lincei, (5), vol. 30 (1921)). (Received June 6, 1942.)

257. R. H. Cameron and W. T. Martin: Infinite linear difference equations with arbitrary real spans and first degree coefficients.

The authors investigate the equation $\int_{-\infty}^{\infty} (z-\lambda) dp(\lambda) + \int_{-\infty}^{\infty} f(z-\lambda) dq(\lambda) = g(z)$ in a strip a < lmz < b. Under fairly weak conditions on p, q, and g it is shown that the equation has a unique analytic solution of a fairly general character. (Received June 24, 1942.)

258. J. A. Clarkson and Paul Erdös: On the approximation of continuous functions by polynomials.

Let x^{n_i} be a set of powers of $x, n_i \rightarrow \infty$. Then a well known theorem of Müntz and Szász states that the necessary and sufficient condition that the powers x^{n_i} and 1 shall span the whole space of continuous functions, in the interval (0, 1) is that