Analysis

255. C. R. Adams and A. P. Morse: On approximating certain integrals by sums.

For $f \in L(E), B$ a measurable subset of $E, 0<|B|=$ measure $(B)<\infty$, let $\mathfrak{M}_{B} f=\int_{B} f /|B|$. As B varies, let $\Re(f)$ represent the set of values of $\mathfrak{M}_{B} f$; and let ϕ be a function whose domain includes $\Re(f)$. For $0<\delta \leqq \infty$ let F be an arbitrary setpartition of E into disjoint measurable subsets each with diameter less than δ; and let the aggregate of all such partitions be denoted by $\Gamma_{\delta}(E)$. What conditions on f and ϕ will insure the (finite) existence of $\int_{E \phi}[f(x)] d x$ and of $\lim _{\delta \rightarrow 0} \inf _{F \in{ }_{\Gamma_{\delta}(E)}}$ $\sum_{B \in F} \phi\left[M_{B} f\right]|B|, \lim _{\delta \rightarrow 0} \sup _{F} \in \Gamma_{\delta(E)} \sum_{B \in F} \phi\left[M_{B} f\right]|B|$ and their equality? For ϕ continuous, a necessary and sufficient condition is found. The hypothesis of continuity on ϕ cannot be dispensed with. "Sampling" can be allowed in the sum (see Adams and Morse, Random sampling in the evaluation of a Lebesgue integral, this Bulletin, vol. 45 (1939), pp. 442-447). A sufficient condition, often useful for testing, is found in terms of the existence of a convex dominant for $|\phi|$; such a convex dominant need not exist, but a condition is determined under which it does. Applications are made to functions f which are of bounded variation or are absolutely continuous in a certain generalized sense involving ϕ. Some new results in the general theory of functions of sets are included. (Received July 14, 1942.)
256. G. E. Albert: Criteria for the closure of systems of orthogonal functions.

Let the system F of functions $f_{n}(x), n=0,1,2, \cdots$, be orthonormal on the inter$\operatorname{val}(a, b)$. For any fixed point t in (a, b) let $g_{t}(x)$ denote the function which is equal to unity on (a, t) and zero on (t, b). Let $s_{n}(x)$ denote the partial sum of the generalized Fourier series with respect to F for the function $g_{t}(x)$. Define the function $\sigma_{n}(t)$ which, for each t in (a, b), is equal to $s_{n}(t)$. A necessary and sufficient condition that the system F be closed in the class of functions having integrable (Riemann or Lebesgue) squares on (a, b) is: $\lim _{n} \int_{a}^{b}\left|1-2 \sigma_{n}(t)\right| d t=0$. A sufficient condition is that $\lim _{n} \int_{a}^{b}\left\{1-2 \sigma_{n}(t)\right\}^{2} d t=0$. The verification of the latter criterion for the trigonometric system F is a matter of elementary calculus. Both criteria are extended to systems F orthogonal with respect to a positive weight function; in such cases the interval (a, b) may be infinite. The criteria stated follow easily from a theorem due to Vitali (Rendiconti dei Lincei, (5), vol. 30 (1921)). (Received June 6, 1942.)

257. R. H. Cameron and W. T. Martin: Infinite linear difference equations with arbitrary real spans and first degree coefficients.

The authors investigate the equation $\int_{-\infty}^{\infty}(z-\lambda) f(z-\lambda) d p(\lambda)+\int_{-\infty}^{\infty} f(z-\lambda) d q(\lambda)$ $=g(z)$ in a strip $a<l m z<b$. Under fairly weak conditions on p, q, and g it is shown that the equation has a unique analytic solution of a fairly general character. (Received June 24, 1942.)
258. J. A. Clarkson and Paul Erdös: On the approximation of continuous functions by polynomials.

Let $x^{n_{i}}$ be a set of powers of $x, n_{i} \rightarrow \infty$. Then a well known theorem of Müntz and Szász states that the necessary and sufficient condition that the powers $x^{n_{i}}$ and 1 shall span the whole space of continuous functions, in the interval $(0,1)$ is that

