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The cyclic connectivity theorem was first proved for the plane in 
1927 by G. T. Whyburn [5]. The extension of this theorem to metric 
space afforded some difficulty and the first proof [ l ] was long and 
tedious and complicated with convergence difficulties. A second and 
simpler proof appeared in 1931 [ó], but in this proof it is necessary 
that quite a number of properties of Peano spaces be proved in 
advance. 

This note at tempts to give a new proof in which convergence 
troubles are encountered at just one point (step (b)) and in which 
just three theorems about Peano space need be known in advance: 
(A) Every component of an open set is open. (B) Open connected sets are 
arc-wise connected. (C) The space is arc-wise locally connected. Actually 
just two properties need to be established before cyclic connectivity 
can be proved, for the third theorem (C) is a simple consequence of 
the first two.1 Thus the cyclic connectivity theorem may be estab­
lished at the very beginning of the theory of Peano spaces and is 
available for use in studying other properties. 

CYCLIC CONNECTIVITY THEOREM. If no single point of a locally corn-
pact, connected and locally connected metric space separates the space 
between the two given points, there is a simple closed curve containing 
the two points. 

Let p and q be the two points. There exists an arc a of the space 5 
with end points p and q by (B). We shall say that an arc /3 spans the 
point v of a if (3 has only its end points on a and v lies between these 
end points. We shall say that a set of arcs C spans a subset K oî a 
if each point of K is spanned by some arc of the set C. 

If an arc /3 exists with end points r and q and such that a-l3 = r+q, 
then step (d) in the proof has been achieved. Hence we consider only 
the case where no such arc exists. This assumption is used in the 
proof of step (b). 
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1 Let G be the component of S(p, e) containing the point p. By (A), G is open. Then 
for some ô, S(p, ô)(ZG. By (B) G is arc-wise connected. Hence every point of S(p, b) 
may be joined to p by an arc in G, and thus in S(p, e), which proves arc-wise local con­
nectivity. 
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