A LINEAR TRANSFORMATION WHOSE VARIABLES AND COEFFICIENTS ARE SETS OF POINTS

S. T. SANDERS, JR.

Introduction. While the theory of the linear transformation has been developed in great detail, attention has seldom¹ been called to the transformation T in which variables and coefficients are sets of points. Doubtless the nonexistence of a unique inverse transformation has occasioned this neglect. In this paper the writer studies the iteration of T.

Consider first the transformation

$$T: \begin{array}{c} x_1 = a_{11}x_1' + a_{12}x_2' \\ x_2 = a_{21}x_1' + a_{22}x_2' \end{array},$$

whose set matrix is

$$M = \left\| \begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right\|,$$

where the a's and x's are sets of points, and the indicated sums and products refer to set operations. Applying T to the primed variables, we have the product transformation

$$T^{2}: \quad \begin{aligned} x_{1} &= a_{11}^{(2)} x_{1}^{\prime\prime} + a_{12}^{(2)} x_{2}^{\prime\prime} \\ x_{2} &= a_{21}^{(2)} x_{1}^{\prime\prime} + a_{22}^{(2)} x_{2}^{\prime\prime} \end{aligned}$$

of set matrix

$$M^2 = \left| \left| \begin{array}{cc} a_{11}^{(2)} & a_{12}^{(2)} \\ a_{21}^{(2)} & a_{22}^{(2)} \end{array} \right|
ight|,$$

where

(1) $a_{11}^{(2)} = a_{11} + a_{12}a_{21}, \qquad a_{12}^{(2)} = a_{11}a_{12} + a_{12}a_{22}, \\ a_{21}^{(2)} = a_{21}a_{11} + a_{22}a_{21}, \qquad a_{22}^{(2)} = a_{21}a_{12} + a_{22}.$

Transforming in turn each new set of variables, we obtain product transformations T^3 , T^4 , \cdots , whose set matrices are M^3 , M^4 , \cdots .

Presented to the Society, December 30, 1941 under the title On powers of a matrix whose elements are sets of points; received by the editors August 25, 1941.

¹ Lowenheim, Über Transformationen im Gebietekalkül, Mathematische Annalen, vol. 73 (1913), pp. 245–272; Gebietsdetermination, Mathematische Annalen, vol.79 (1919), pp. 223–236.