ON 3-DIMENSIONAL MANIFOLDS

C. E. CLARK

Let P be a 3-dimensional manifold. Let Q be a 2-dimensional manifold imbedded in P. Moreover, let P and Q admit of a permissible simplicial division K, that is, a simplicial division of P such that some subcomplex of K, say L, is a simplicial division of Q. Let K_i and L_i denote the *i*th normal subdivisions of K and L, respectively. We define the neighborhood N_i of L_i to be the simplicial complex consisting of the simplexes of K_i that have at least one vertex in L_i together with the sides of all such simplexes. By the boundary B_i of N_i we mean the simplicial complex consisting of the simplexes of N_i that have no vertex in L_i . Our purpose is to prove the following theorem.

THEOREM. The boundary B_2 is a two-fold but not necessarily connected covering of Q, and change of permissible division K replaces B_2 by a homeomorph of itself.

PROOF. The neighborhood N_1 is the sum of a set of 3-dimensional simplexes. Some of these 3-simplexes, say a_1, a_2, \cdots , have exactly one vertex in L_1 , others, say b_1, b_2, \cdots , have exactly two vertices in L_1 , while the remaining, say c_1, c_2, \cdots , have three vertices in L_1 . Since K_1 is a normal subdivision of K, the intersection of L_1 and b_i or c_i is a 1-simplex or 2-simplex, respectively. Let α_i , β_i , and γ_i be the intersections of B_2 and a_i , b_i , and c_i , respectively. We shall regard α_i and γ_i as triangles with vertices on the 1-simplexes of a_i and c_i . Also we shall regard β_i as a square with vertices on the 1-simplexes of b_i .

Any 2-simplex of L_1 , say ABC, is incident to exactly two of the c_i . Let $c_1 = ABCM$. There is a unique 3-simplex of N_1 , say σ , that is incident to ABM and different from c_1 . This σ is either a c_i , say c_2 , or a b_i , say b_2 . If σ is c_2 , then the triangles γ_1 and γ_2 have a common side. Suppose that σ is $b_2 = ABMN$. The 2-simplex ABN is incident to a unique 3-simplex of N_1 , say τ , with $\tau \neq ABMN$. This τ is either c_3 or b_3 . If $\tau = b_3$, there is a c_4 , or b_4 . Finally we must find a $c_p = ABDS$, D in L_1 , S in B_1 . We now consider β_2 , β_3 , \cdots , and β_{p-1} . The sum of these squares is topologically equivalent to a square. One side of the square is coincident with a side of γ_p .

Received by the editors July 21, 1941.

¹ Our terminology is that of Seifert-Threlfall, *Lehrbuch der Topologie*. Manifolds are finite, while simplexes and cells are closed point sets.