CLASSES OF MAXIMUM NUMBERS ASSOCIATED WITH TWO SYMMETRIC EQUATIONS

H. A. SIMMONS

1. **Introduction**. Let $\sum_{i,j} (1/x)$ stand for the elementary symmetric function of the *j*th order of the *i* reciprocals $(1/x_p)$ $(p=1, 2, \dots, i>0)$ with

$$\sum_{i,j} (1/x) \equiv 0 \text{ when } i < j \text{ or } j < 0,$$

$$\equiv 1 \text{ when } j = 0$$

 $(\sum_{i,j}(x)$ having a similar meaning for the x_p themselves).

Here we extend the work of papers I,¹ II,² III³ by obtaining relative to equations (1) and (1.1) below results analogous to those in I, II, III

(1)⁴
$$\sum_{n,n-1} (1/x) + \sum_{i=1}^{m} a_i [\pi(x)]^{-i} = b/a,$$

$$a = (c+1)b-1, \ \pi(x) = x_1 x_2 \cdots x_n,$$

(1.1)
$$\sum_{n,n-2} (1/x) + \lambda \sum_{n,n-1} (1/x) + \mu \sum_{n,n} (1/x) = b/a;$$

in (1), b, c, and m are arbitrary positive integers, n > 1, and the a_i are any non-negative real numbers; in (1.1), a and b are as in (1), n > 2, λ is a non-negative integer, and μ is a positive integer.

We have not seen previous mention of (1); the case of (1.1) in which $\mu=0$ was treated in II and that in which $\lambda=\mu=1$ was treated in III. Our procedure for (1) does not suffice for the equation that is obtained by adding to the left member of (1.1) the terms

$$\sum_{i=2}^{m} a_{i} [\pi(x)]^{-i}.$$

The following definitions and notation from I will be frequently

Presented to the Society, September 5, 1941; received by the editors June 27, 1941.

¹ H. A. Simmons, Transactions of this Society, vol. 34 (1932), pp. 876-907.

² Norma Stelford and H. A. Simmons, this Bulletin, vol. 40 (1934), pp. 884-894.

³ H. A. Simmons and W. E. Block, Duke Mathematical Journal, vol. 2 (1936), pp. 317–340.

⁴ In so far as we know, the form of the right member of equation (1) was first used by Tanzo Takenouchi in the Proceedings of the Physico-mathematical Society of Japan, (3), vol. 3 (1921), pp. 78–92.