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quence of polynomials whose roots lie on the axis of pure imaginaries
and which converges uniformly in every finite region.
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We consider the linear space $(c) whose elements are functions f(z)
[z=x+414y] which are analytic for x >¢ and satisfy

® [ 1t i iy = m, >
where the finite number M depends on the function in question. It
is well known that an element f(z) of §(c) has boundary values
flc+1y) almost everywhere on x =c¢, and that §(c) is a Hilbert space
if the norm of f(2) is defined by

@l = [ | e+ i |aa.
Furthermore, it is known [5, p. 8] that if f(2) E9(c), then f(z) is
representable as a Laplace integral for x >¢, in the sense that there
is a unique function® ¢(f) with e~¢(t) EL2(0, «) such that

(2) lim

T—w

f@) — foTe‘%(t)dtH =0;

we shall express (2) by writing
3) f(2) =f e *tp(t)ds, x> c.
0

It is easily verified that the integral in (3) converges in the ordinary
sense for x >c¢. A Laplace integral may be regarded as a generalized
power series; the object of this note is to generalize the integral repre-
sentation (3) by replacing e~** by a kernel g(z, ) which is in some sense
“nearly” e~2t, just as power series )_a,z" have been generalized? by
replacing the functions 2* by functions g,(2).
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1 Unique, that is, up to sets of measure zero.
2 For a bibliography of this problem, see [1].



