ROOTS OF CERTAIN CLASSES OF POLYNOMIALS

LOUIS WEISNER

It is well known¹ that if the roots of the polynomials $\phi(z)$ and F(z) are real, so are the roots of the polynomial $\phi(D)F(z)$, where D = d/dz. This result has been applied to certain types of entire functions and trigonometric integrals.² The following example illustrates the method employed. If

(1)
$$f(z) = \sum_{k=0}^{n} c_k z^k$$

is a polynomial whose roots $\lambda_1, \dots, \lambda_n$ lie on the unit circle, then the roots of the polynomials

$$F_{p}(z) = c_{n} \prod_{k=1}^{n} \left[(1 + z/p)^{p} - \lambda_{k} (1 - z/p)^{p} \right], \qquad p = 1, 2, \cdots,$$

lie on the axis of pure imaginaries. Therefore, if the roots of the polynomial $\phi(z)$ lie on the axis of pure imaginaries, so do the roots of the polynomials³ $\phi(D) F_p(z)$, $p = 1, 2, \cdots$. Now the sequence of polynomials $\{F_p(z)\}$ converges uniformly in every finite region to the function

$$F(z) = e^{-nz}f(e^{2z}) = \sum_{k=0}^{n} c_k e^{(2k-n)z},$$

and the sequence $\{\phi(D)F_p(z)\}$ converges likewise to

$$\phi(D)F(z) = \sum_{k=0}^{n} c_k \phi(2k - n) e^{(2k-n)z}$$

The roots of $\phi(D)F(z)$ therefore lie on the axis of pure imaginaries. Removing the innocuous factor e^{-nz} , and replacing e^{2z} by z, the following theorem results: If the roots of f(z) lie on the unit circle, and the roots of $\phi(z)$ lie on the axis of pure imaginaries, then the roots of the polynomial

Presented to the Society, September 5, 1941; received by the editors June 6, 1941. ¹ Ch. Hermite, Nouvelles Annales de Mathématiques, vol. 5 (1866), p. 479; Pólya and Szegö, Aufgaben und Lehrsätze aus der Analysis II, p. 47, Problem 62.

² See G. Pólya, Über trigonometrische Integrale mit nur reellen Nullstellen, Journal für die reine und angewandte Mathematik, vol. 158 (1927), pp. 6-18.

³ Replacing z by *iz* it follows from the above theorem of Hermite that if the roots of $\phi(z)$ and F(z) lie on the axis of pure imaginaries, so do the roots of $\phi(D)F(z)$.