ROOTS OF CERTAIN CLASSES OF POLYNOMIALS

LOUIS WEISNER

It is well known ${ }^{1}$ that if the roots of the polynomials $\phi(z)$ and $F(z)$ are real, so are the roots of the polynomial $\phi(D) F(z)$, where $D=d / d z$. This result has been applied to certain types of entire functions and trigonometric integrals. ${ }^{2}$ The following example illustrates the method employed. If

$$
\begin{equation*}
f(z)=\sum_{k=0}^{n} c_{k} z^{k} \tag{1}
\end{equation*}
$$

is a polynomial whose roots $\lambda_{1}, \cdots, \lambda_{n}$ lie on the unit circle, then the roots of the polynomials

$$
F_{p}(z)=c_{n} \prod_{k=1}^{n}\left[(1+z / p)^{p}-\lambda_{k}(1-z / p)^{p}\right], \quad p=1,2, \cdots
$$

lie on the axis of pure imaginaries. Therefore, if the roots of the polynomial $\phi(z)$ lie on the axis of pure imaginaries, so do the roots of the polynomials ${ }^{3} \phi(D) F_{p}(z), p=1,2, \cdots$. Now the sequence of polynomials $\left\{F_{p}(z)\right\}$ converges uniformly in every finite region to the function

$$
F(z)=e^{-n z} f\left(e^{2 z}\right)=\sum_{k=0}^{n} c_{k} e^{(2 k-n) z},
$$

and the sequence $\left\{\phi(D) F_{p}(z)\right\}$ converges likewise to

$$
\phi(D) F(z)=\sum_{k=0}^{n} c_{k} \phi(2 k-n) e^{(2 k-n) z} .
$$

The roots of $\phi(D) F(z)$ therefore lie on the axis of pure imaginaries. Removing the innocuous factor $e^{-n z}$, and replacing $e^{2 z}$ by z, the following theorem results: If the roots of $f(z)$ lie on the unit circle, and the roots of $\phi(z)$ lie on the axis of pure imaginaries, then the roots of the polynomial

[^0]
[^0]: Presented to the Society, September 5, 1941; received by the editors June 6, 1941.
 ${ }^{1}$ Ch. Hermite, Nouvelles Annales de Mathématiques, vol. 5 (1866), p. 479; Pólya and Szegö, Aufgaben und Lehrsätze aus der Analysis II, p. 47, Problem 62.
 ${ }^{2}$ See G. Pólya, Über trigonometrische Integrale mit nur reellen Nullstellen, Journal für die reine und angewandte Mathematik, vol. 158 (1927), pp. 6-18.
 ${ }^{3}$ Replacing z by $i z$ it follows from the above theorem of Hermite that if the roots of $\phi(z)$ and $F(z)$ lie on the axis of pure imaginaries, so do the roots of $\phi(D) F(z)$.

