FORCED OSCILLATIONS OF CONTINUOUS DYNAMICAL SYSTEMS

W. H. INGRAM

Introduction. The system of differential equations and boundary conditions
(a) $\frac{\partial u_{i}}{\partial x}=\Sigma a_{i j}(x) \frac{\partial u_{j}}{\partial t}+\Sigma b_{i j}(x) u_{j}, \quad \Sigma\left\{\alpha_{i j} u_{j}(a)+\beta_{i j} u_{j}(b)\right\}=0$
($i, j=1,2, \cdots, n, a \leqq x \leqq b$) has application in the theory of the electrical transmission line, the diffusion of heat along thin rods and around thin rings and, when some of the u 's are employed to designate rates of change of other u 's, to vibrating strings, bars, air columns and other dynamical systems. The system of total differential equations

$$
\begin{equation*}
Y^{\prime}(x)=(\mu \mathcal{A}+\mathcal{B}) Y, \quad W_{a} Y(a)+\mathfrak{W}_{b} Y(b)=0 \tag{b}
\end{equation*}
$$

where $\mathcal{A}=\left(a_{i j}\right), \mathcal{B}=\left(b_{i j}\right), \mathscr{W}_{a}=\left(\alpha_{i j}\right), \mathscr{W}_{b}=\left(\beta_{i j}\right)$, and where Y is a columnar matrix of n elements each a function of x, may be obtained as the result of the Bernoulli-Taylor substitution $u_{i}(x, t)=\epsilon^{\mu t} y_{i}(x)$ into (a).

The system (b) has been the starting point for many researches centered around the problem of expressing an arbitrary function f or, more generally, a set of functions $\left\{f_{i}\right\}$, in terms of its characteristic solutions. A solution of this problem in the simple case, having application to the uniform dissipationless vibrating string, was first obtained by Daniel Bernoulli about the year 1732 and a solution having application to the nonuniform string was first obtained by Liouville ${ }^{1}$ one hundred years later. A purportedly more rigorous treatment of Liouville's problem was given by Kneser ${ }^{2}$ in 1904. Since that date a great many papers have appeared, having to do with the system (b) under one restriction or another, the most comprehensive of which are the papers by Bliss, ${ }^{3}$ who obtained uniform convergence in his expansion theorem by requiring (b) to be "definitely" self-adjoint and by imposing a restriction on the functions f_{i}, and Birkhoff and Langer ${ }^{4}$ who considered the general case.

[^0]
[^0]: Received by the editors May 7, 1941.
 ${ }^{1}$ Liouville, Journal de Mathématiques Pures et Appliquées, vol. 1 (1836), pp. 253, 269.
 ${ }^{2}$ Kneser, Mathematische Annalen, vol. 58 (1904), p. 108.
 ${ }^{3}$ Bliss, Transactions of this Society, vol. 28 (1926), p. 576.
 ${ }^{4}$ Birkhoff and Langer, Proceedings of the American Academy of Arts and Sciences, vol. 58 (1923), p. 100.

