AN EXTENSION OF A THEOREM OF WITT

BURTON W. JONES

1. Introduction. If u_1, \dots, u_n is a set of vectors such that $u_i u_j = u_j u_i$ are numbers of a field K for $i, j = 1, 2, \dots, n$, all linear combinations of these vectors with coefficients in K constitute a vector space

$$\mathfrak{S} = \langle \mathfrak{u}_1, \cdots, \mathfrak{u}_n \rangle$$

over K and the symmetric matrix $\mathfrak{A} = (\mathfrak{u}_i\mathfrak{u}_i) = (a_{ij})$ is the *multiplica*tion table for the basis $\mathfrak{u}_1, \cdots, \mathfrak{u}_n$. The inner product of two vectors $\sum x_i\mathfrak{u}_i$ and $\sum y_i\mathfrak{u}_i$ is the bilinear form

$$\sum (\mathfrak{u}_i\mathfrak{u}_j)x_iy_j = \sum a_{ij}x_iy_j$$

and the *norm* of a vector is the inner product of a vector and itself; it can be expressed as a quadratic form.

If \mathfrak{C} is a nonsingular transformation with coefficients in K and $(\mathfrak{u}_1, \dots, \mathfrak{u}_n)\mathfrak{C} = (\mathfrak{v}_1, \dots, \mathfrak{v}_n)$, the v's will constitute a new basis of the same space \mathfrak{S} and the multiplication table for the new matrix is $\mathfrak{C}'\mathfrak{A}\mathfrak{C}$. This has the same effect on the matrix of the quadratic form $\sum a_{ij}x_ix_j$ as the transformation $(x_1, \dots, x_n)' = \mathfrak{C}(y_1, \dots, y_n)'$. The quadratic forms f_1 and f_2 are equivalent (in K) if one may be taken into the other by a nonsingular transformation with coefficients in K. Then the corresponding vector spaces are said to be equivalent (in K). We write $f_1 \cong f_2$ and $\mathfrak{S}_1 \cong \mathfrak{S}_2$.

It should be noted, in passing, that two vector spaces may be equivalent without being identical. For example, if n=3 and

$$\mathfrak{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

it is true that $\langle \mathfrak{u}_1, \mathfrak{u}_2 \rangle \cong \langle \mathfrak{u}_2, \mathfrak{u}_3 \rangle$. However, an isomorphism may be established between two sets of vectors having the same multiplication table.

Two vectors \mathfrak{u} and \mathfrak{v} are *orthogonal* if $\mathfrak{u}\mathfrak{v}=0$. Two vector spaces are orthogonal if every vector of one is orthogonal to every vector of the other. Two subspaces, \mathfrak{S}_1 and \mathfrak{S}_2 , of \mathfrak{S} are *complementary* if every vector of \mathfrak{S} is the sum of a vector of \mathfrak{S}_1 and a vector of \mathfrak{S}_2 . If \mathfrak{S}_1 and \mathfrak{S}_2 are complementary orthogonal subspaces of \mathfrak{S} we write

Presented to the Society, September 5, 1941; received by the editors April 17, 1941.