AN EXTENSION OF A THEOREM OF WITT

BURTON W. JONES

1. Introduction. If $\mathfrak{u}_{1}, \cdots, \mathfrak{u}_{n}$ is a set of vectors such that $\mathfrak{u}_{i} \mathfrak{u}_{j}=\mathfrak{u}_{j} \mathfrak{u}_{i}$ are numbers of a field K for $i, j=1,2, \cdots, n$, all linear combinations of these vectors with coefficients in K constitute a vector space

$$
\mathfrak{S}=\left\langle\mathfrak{u}_{1}, \cdots, \mathfrak{u}_{n}\right\rangle
$$

over K and the symmetric matrix $\mathfrak{H}=\left(\mathfrak{u}_{i} \mathfrak{u}_{j}\right)=\left(a_{i j}\right)$ is the multiplication table for the basis $\mathfrak{u}_{1}, \cdots, \mathfrak{u}_{n}$. The inner product of two vectors $\sum x_{i} \mathfrak{u}_{i}$ and $\sum y_{i} \mathfrak{u}_{i}$ is the bilinear form

$$
\sum\left(\mathfrak{u}_{i} \mathfrak{l}_{j}\right) x_{i} y_{j}=\sum a_{i j} x_{i} y_{j}
$$

and the norm of a vector is the inner product of a vector and itself; it can be expressed as a quadratic form.

If \mathbb{C} is a nonsingular transformation with coefficients in K and $\left(\mathfrak{u}_{1}, \cdots, \mathfrak{u}_{n}\right) \mathbb{C}=\left(\mathfrak{b}_{1}, \cdots, \mathfrak{v}_{n}\right)$, the \mathfrak{b} 's will constitute a new basis of the same space \mathfrak{S} and the multiplication table for the new matrix is $\mathbb{C}^{\prime} \mathfrak{A C}$. This has the same effect on the matrix of the quadratic form $\sum a_{i j} x_{i} x_{j}$ as the transformation $\left(x_{1}, \cdots, x_{n}\right)^{\prime}=\left(\mathcal{C}\left(y_{1}, \cdots, y_{n}\right)^{\prime}\right.$. The quadratic forms f_{1} and f_{2} are equivalent (in K) if one may be taken into the other by a nonsingular transformation with coefficients in K. Then the corresponding vector spaces are said to be equivalent (in K). We write $f_{1} \cong f_{2}$ and $\mathfrak{S}_{1} \cong \mathfrak{S}_{2}$.

It should be noted, in passing, that two vector spaces may be equivalent without being identical. For example, if $n=3$ and

$$
\mathfrak{H}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

it is true that $\left\langle\mathfrak{u}_{1}, \mathfrak{n}_{2}\right\rangle \cong\left\langle\mathfrak{t}_{2}, \mathfrak{u}_{3}\right\rangle$. However, an isomorphism may be established between two sets of vectors having the same multiplication table.

Two vectors \mathfrak{u} and \mathfrak{v} are orthogonal if $\mathfrak{u b}=0$. Two vector spaces are orthogonal if every vector of one is orthogonal to every vector of the other. Two subspaces, \mathfrak{S}_{1} and \mathfrak{S}_{2}, of \mathfrak{S} are complementary if every vector of \mathfrak{S} is the sum of a vector of \mathfrak{S}_{1} and a vector of \mathfrak{S}_{2}. If \mathfrak{S}_{1} and \mathfrak{S}_{2} are complementary orthogonal subspaces of \mathfrak{S} we write

[^0]
[^0]: Presented to the Society, September 5, 1941 ; received by the editors April 17, 1941.

