ON APPROXIMATION BY EUCLIDEAN AND NON-EUCLIDEAN TRANSLATIONS OF AN ANALYTIC FUNCTION

W. SEIDEL AND J. L. WALSH

In 1929 G. D. Birkhoff established ${ }^{1}$ the noteworthy result that an entire function $F(z)$ exists such that to an arbitrary entire function $g(z)$ corresponds a sequence a_{1}, a_{2}, \cdots depending on $g(z)$ with the property

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(z+a_{n}\right)=g(z) \tag{1}
\end{equation*}
$$

for all z, uniformly for z on every closed bounded set.
It is the object of the present note (a) to indicate that not merely an arbitrary entire function $g(z)$ can be expressed in the form (1), but also any function analytic in a simply connected region, and (b) to study the non-euclidean analogue of the entire problem; precisely analogous results are obtained. Some related topics under (a) have recently been studied by A. Roth, ${ }^{2}$ who, however, does not mention the results to be proved here.

The immediate occasion of the interest of the present writers ${ }^{3}$ in the problem is through (b), for non-euclidean translations have been widely used in the study of derivatives of univalent and other functions analytic in the unit circle $|z|=1$; limit functions under such translations are of great significance in the study of derivatives and of limit values of a given function as a variable point z approaches the circumference $|z|=1$.

We shall give a proof of the following theorem, proof and theorem differing only in detail from those of Birkhoff:

Theorem 1. There exists an entire function $F(z)$ such that given an arbitrary function $f(z)$ analytic in a simply connected region R of the z-plane, we have for suitably chosen a_{1}, a_{2}, \cdots the relation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F\left(z+a_{n}\right)=f(z) \tag{2}
\end{equation*}
$$

for z in R, uniformly on any closed bounded set in R.

[^0]
[^0]: ${ }^{1}$ Comptes Rendus de l'Académie des Sciences, Paris, vol. 189, pp. 473-475.
 ${ }_{2}$ Comentarii Mathematici Helvetici, vol. 11 (1938-1939), pp. 77-125.
 ${ }^{3}$ Compare Seidel and Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, a forthcoming paper in the Transactions of this Society.

