OSCULATING QUADRICS OF RULED SURFACES IN RECIPROCAL RECTILINEAR CONGRUENCES

M. L. MACQUEEN

1. Introduction. Let x be a general point of an analytic non-ruled surface S referred to its asymptotic net in ordinary projective space. By a line l_{1} at the point x we mean any line through the point x and not lying in the tangent plane of the surface at the point x. Dually, a line l_{2} is any line in the tangent plane of the surface at the point x but not passing through the point x. The lines l_{1}, l_{2} are called reciprocal lines if they are reciprocal polar lines with respect to the quadric of Lie at the point x. In this case, when the point x varies over the surface S, the lines l_{1}, l_{2} generate two rectilinear congruences Γ_{1}, Γ_{2} which are said to be reciprocal with respect to the surface. If, however, the point x moves along the u-curve, the locus of the line l_{1} is a ruled surface $R_{1}^{(u)}$ of the congruence Γ_{1}. The osculating quadric along a generator l_{1} of the ruled surface $R_{1}^{(u)}$ is the limit of the quadric determined by the line l_{1} through the point x and the lines l_{1} through two neighboring points P_{1}, P_{2} on the u-curve as each of these points independently approaches the point x along the u-curve. The quadric thus defined will be denoted by $Q_{1}^{(u)}$. A second quadric $Q_{1}^{(v)}$ is determined by three consecutive lines l_{1} at points of the v-curve through the point x. Moreover, there are two quadrics, denoted by $Q_{2}^{(u)}$ and $Q_{2}^{(v)}$, which are associated with two ruled surfaces of the reciprocal congruence Γ_{2} and which can be defined similarly. This note will study the projective differential geometry of the quadrics thus defined.
2. Analytic basis. Let the surface S under consideration be an analytic non-ruled surface whose parametric vector equation, referred to asymptotic parameters u, v, is

$$
\begin{equation*}
x=x(u, v) . \tag{1}
\end{equation*}
$$

The four coordinates x of a variable point x on the surface satisfy two partial differential equations which can be reduced, by a suitably chosen transformation of proportionality factor, to Fubini's canonical form

$$
\begin{equation*}
x_{u u}=p x+\theta_{u} x_{u}+\beta x_{v}, \quad x_{v v}=q x+\gamma x_{u}+\theta_{v} x_{v}, \quad \theta=\log \beta \gamma, \tag{2}
\end{equation*}
$$

in which the subscripts indicate partial differentiation. The coefficients of these equations are functions of u, v and satisfy three integrability conditions which need not be written here.

