A FIXED-POINT THEOREM FOR TREES¹

A. D. WALLACE

By a *tree* we mean a compact (= bicompact) Hausdorff space which is acyclic in the sense that

(i) if \mathfrak{U} is a f.o.c. (=finite open covering) of a tree T then there is a f.o.c. $\mathfrak{B} \subset \mathfrak{U}$ such that the nerve $N(\mathfrak{B})$ is a combinatorial tree,

and which is locally connected in the sense that

(ii) if \mathfrak{U} is a f.o.c. of T then there is a f.o.c. $\mathfrak{V} \subset \mathfrak{U}$ whose vertices are connected sets.

It may be shown [3] that an acyclic continuous curve in the usual sense is a tree in our terminology. If q is a mapping which assigns to each point t of a topological space a set qt in a topological space, then we say that q is continuous provided that for each t and each neighborhood U of qt we can find an open set V containing t such that if t'is in V then qt' is in U. Our present purpose is to establish the following result:

(A) Let T be a tree and let q be a continuous point-to-set mapping which assigns to each point t a continuum qt in T. Then there is a $t_0 \in T$ such that $t_0 \in qt_0$.

The proof (which is divided into several lemmas) uses strongly a technique introduced by H. Hopf [1]. However the present note has been made self-contained.

(A₁) The intersection of two continua of T is again a continuum.

PROOF. Let B_1 , B_2 be two continua such that $B_1 \cdot B_2 = C_1 + C_2$ where the C_i are disjoint and closed. We can find disjoint open sets $D_i \supseteq C_i$. Let $t \in T - B_1 \cdot B_2$. We can then find an open set V_i containing t and which does not meet both B_1 and B_2 . The sets D_i together with the sets V_t can be reduced to a f.o.c. \mathfrak{U} of T. Let $\mathfrak{V} \subseteq \mathfrak{U}$ be the f.o.c. described in (i). Let \mathfrak{B}_i be those vertices of \mathfrak{B} on B_i . It is easy to see that $N(\mathfrak{B}_i)$ is connected. If $c_i \in C_i$ we can find a chain of 1-cells E_i in $N(\mathfrak{B}_i)$ whose first vertex contains c_1 and whose last vertex contains c_2 . Now we cannot have $E_i \subset D_1 + D_2$ and E_i contains a vertex which is not on B_j . Hence $E_1 \neq E_2$ and so $N(\mathfrak{B})$ is not a tree. This contradiction completes the proof.

¹ Presented to the Society, May 3, 1941.