ON THE MAPPING OF THE SETS OF 24 POINTS OF THE SYMMETRIC SUBSTITUTION GROUP G_{24} IN ORDINARY SPACE UPON A HYPERQUADRIC CONE

EARL WALDEN

Introduction. The mapping of the sextuples of the symmetric substitution group G_{6} in a plane upon a quadric has been done by Emch. ${ }^{1}$ The 24 permutations of 4 elements $x_{1}, x_{2}, x_{3}, x_{4}$ considered as projective coordinates in ordinary space determine a configuration ${ }^{2}$ which may be mapped on a hypersurface in S_{4}. I shall show that the hypersurface on which we will map is a hyperquadric cone. The map of every configuration on the hyperquadric will be a configuration in ordinary space, invariant under the G_{24}.

The mapping of the G_{24}. We shall represent the elementary symmetric functions as follows:

$$
\begin{aligned}
& \phi_{1}=x_{1}+x_{2}+x_{3}+x_{4}, \\
& \phi_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}, \\
& \phi_{3}=x_{1} x_{2} x_{3}+x_{1} x_{3} x_{4}+x_{1} x_{2} x_{4}+x_{2} x_{3} x_{4}, \\
& \phi_{4}=x_{1} x_{2} x_{3} x_{4} .
\end{aligned}
$$

Let $y_{i}=A_{i} \phi_{1}^{4}+B_{i} \phi_{1}^{2} \phi_{2}+C_{i} \phi_{2}^{2}+D_{i} \phi_{1} \phi_{3}+E_{i} \phi_{4}$ where $i=1,2,3,4,5$. There are five linearly independent y 's. We shall consider the y 's as the coordinates of a point in S_{4}. Thus to each point in (x), and consequently to each of 24 points in (x), corresponds a point (y) in S_{4}. The locus of the points (y) is a hypersurface of some order in S_{4}.

Let us choose five linearly independent y 's. (For every choice of y 's we will get some hypersurface and all these hypersurfaces will be linearly related.)

$$
\begin{aligned}
\rho y_{1} & =\sum x_{1}^{4}=\phi_{1}^{4}-4 \phi_{1}^{2} \phi_{2}+2 \phi_{2}^{2}+4 \phi_{1} \phi_{3}-4 \phi_{4}, \\
\rho y_{2} & =\sum x_{1}^{2} x_{2}^{2}=\phi_{2}^{2}-2 \phi_{1} \phi_{3}+2 \phi_{4}, \\
\rho y_{3} & =\sum x_{1}^{3} x_{2}=\phi_{1}^{2} \phi_{2}-2 \phi_{2}^{2}-\phi_{1} \phi_{3}+4 \phi_{4}, \\
\rho y_{4} & =\sum x_{1}^{2} x_{2} x_{3}=\phi_{1} \phi_{3}-4 \phi_{4}, \\
\rho y_{5} & =\sum x_{1} x_{2} x_{3} x_{4}=\phi_{4} .
\end{aligned}
$$

If we eliminate the ϕ 's we get a hyperquadric cone Q given by

[^0]
[^0]: ${ }^{1}$ This Bulletin, vol. 33 (1927), pp. 745-750.
 ${ }^{2}$ Veronese Annali di Mathematica, (2), vol. 2, p. 93.

