ON A GENERALIZED GREEN'S FUNCTION AND CERTAIN OF ITS APPLICATIONS ${ }^{1}$

STEFAN BERGMAN

1. Introduction. A theorem of Blaschke in the theory of a.f. 1 c.v. (analytic functions of one complex variable) states: $\sum_{\nu=1}^{\infty} \log \left|a_{\nu}\right|$ $>-\infty,\left|a_{\nu}\right|<1$, is a necessary and sufficient condition for the existence of a non-negative, harmonic function ${ }^{2} H(z), z \in\left[\mathcal{E}^{2}-S_{\nu=1}^{\infty}\left\{a_{\nu}\right\}\right]$, $\bigotimes^{2}=\mathcal{E}[|z|<1]$, which possesses the property that $\left[H(z)+\log \left|z-a_{\nu}\right|\right]$, $\nu=1,2, \cdots$, is regular in a neighborhood of $z=a_{\nu}$. By

$$
\exp [-H(z)-i B(z)]=f(z)
$$

where $B(z)$ is a function conjugate to $H(z)$ we obtain a function $f(z)$, $|f(z)| \leqq 1, z \in \mathscr{E}^{2}$, which possesses factors $\left(z-a_{\nu}\right), \nu=1,2, \cdots$.

If one wishes to obtain an analogous result in the theory of a.f. $2 \mathrm{c} . \mathrm{v}$. one must bear in mind at first the following fact:

If $f(z) / g(z)$ is regular in \mathbb{E}^{2} we call $g(z)$ a zero function of f in \mathbb{E}^{2}.
Since every function f regular in \mathscr{E}^{2} can be represented in the form $f(z)=\prod\left(z-a_{\nu}\right) k_{\nu}(z)$ where $k_{\nu}(z)$ are regular and nonvanishing in \mathbb{E}^{2}, we need to consider in the theory of a.f. 1 c.v. only linear zero functions. In the case of a.f. 2 c.v. we cannot in general represent even polynomials as products of linear functions; therefore, one must use for zero functions not only linear expressions but also arbitrary a.f. 2 c.v. [1, p. 1189]. ${ }^{3}$

Furthermore there is lacking in the theory of a.f. 2 c.v. a theorem analogous to the theorem of Riemann, stating that every simply connected domain possessing at least two boundary points can be transformed conformally into \mathbb{E}^{2}. We cannot therefore limit ourselves to

[^0]
[^0]: ${ }^{1}$ Presented to the Society, April 27, 1940.
 ${ }^{2}$ We designate by capital and small letters, respectively, real and complex functions of $z_{k}, z_{k}=x_{k}+i y_{k}$, and manifolds by English letters, where the upper index denotes the dimension of the manifold. We omit this index for four-dimensional manifolds. We denote by $\mathcal{E}[\cdots]$ the set of points whose coordinates satisfy the relations indicated in brackets. S means the logical sum. A horizontal bar above a letter indicates the closure of the set denoted by the letter.
 ${ }^{3}$ The numbers in brackets refer to the following papers: Stefan Bergman, 1. Proceedings, Akadem.e van Wetenschappen, Amsterdam, vol. 34 (1932), pp. 1188-1194, 2. Mathematische Annalen, vol. 102 (1934), pp. 324-348, 3. Compositio Mathematica, vol. 3 (1936), pp. 136-173, 4. Compositio Mathematica, vol. 6 (1939), pp. 305-335, 5. Stefan Bergman and Marcinkiewicz, Fundamenta Mathematicae, vol. 33 (1939), pp. 75-94, 6. G. Buler, Bulletin de l'Institute Mathématique de Tomsk, vol. 2 (1939), pp. 164-186, 7. S. Saks, Theory of the Integral, Monografie Matematyczne, vol. 7, Warsaw and Lwów, 1937.

