A NOTE ON THE SPECIAL LINEAR HOMOGENEOUS GROUP $SLH(2, p^n)$

F. A. LEWIS

1. Introduction. The following theorem is due to E. H. Moore.

The special linear homogeneous group $SLH(2, p^n)$ of binary linear substitutions of determinant unity in the $GF[p^n]$ is simply isomorphic with the abstract group L generated by the operators T and S_{λ} , where λ runs through the series of p^n marks of the field, subject to the generational relations

- (a) $S_0 = I$, $S_{\lambda}S_{\mu} = S_{\lambda+\mu}$ (λ , μ any marks),
- (b) $T^4 = I$, $S_{\lambda}T^2 = T^2S_{\lambda}$,
- (c) $S_{\lambda}TS_{\mu}TS_{(1-\lambda)/(1-\lambda\mu)}TS_{1-\lambda\mu}TS_{(1-\mu)/(1-\lambda\mu)}T = I$ (λ , μ any marks, $\lambda \mu \neq 1$).

For $\lambda = 1$, $\mu \neq 1$, (c) gives

(d) $(S_1T^3)^3 = I$.

Other relations employed by Dickson¹ in a proof of this theorem are

- (e) $TS_{\alpha}TS_{2\alpha^{-1}}TS_{\alpha}TS_{2\alpha^{-1}}T^2 = I \ (\alpha \neq 0)$,
- (f) $TS_{\alpha}TS_{\alpha^{-1}}TS_{\rho} = S_{\alpha^{-2}\rho}TS_{\alpha}TS_{\alpha^{-1}}T$ (ρ any mark).

It is the purpose of this paper to prove that (a), (b), (d), and (e) define an abstract group simply isomorphic with $SLH(2, p^n)$ when p>2. If p=2, relation (e) reduces to an identity and must be replaced by (f).

- 2. **Preliminary relations.** We first prove that (f) is a consequence of (a), (b), (d), and (e) when p > 2, so that in what follows we may use (f) for any p. We write (e) in the form
 - (e') $TS_{\alpha}T = S_{-2\alpha^{-1}}TS_{-\alpha}TS_{-2\alpha^{-1}}T^2$

and make an even number of applications of this formula to the right member of (f) as follows:

$$\begin{split} S_{\alpha^{-2}\rho} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}T &= S_{\alpha^{-2}\rho-2\alpha^{-1}}TS_{-\alpha} \cdot TS_{-\alpha^{-1}}T \cdot T^2 \\ &= S_{\alpha^{-2}\rho-2\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{2\alpha} = S_{\alpha^{-2}\rho-4\alpha^{-1}}TS_{-\alpha} \cdot TS_{-\alpha^{-1}}T \cdot S_{2\alpha}T^2 \\ &= S_{\alpha^{-2}\rho-4\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{4\alpha} = S_{\alpha^{-2}\rho-6\alpha^{-1}}TS_{-\alpha} \cdot TS_{-\alpha^{-1}}T \cdot S_{4\alpha}T^2 \\ &= S_{\alpha^{-2}\rho-6\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{6\alpha} = \cdot \cdot \cdot = S_{\alpha^{-2}\rho-2m\alpha^{-1}} \cdot TS_{\alpha}T \cdot S_{\alpha^{-1}}TS_{2m\alpha}. \end{split}$$

Relation (f) is established by taking $m = \rho/2\alpha$. It will be convenient to write (f) in the equivalent form

(f')
$$S_{\alpha}TS_{\alpha}TS_{\alpha^{-1}}T = TS_{\alpha}TS_{\alpha^{-1}}TS_{\alpha\alpha^{2}}$$
.

¹ Linear Groups, Leipzig, 1901. The notation is that employed by Dickson.