RATIONAL APPROXIMATIONS TO IRRATIONALS

ALEXANDER OPPENHEIM

It is well known that if p/q is a convergent to the irrational number x, then $|x-p/q| < 1/q^2$. The immediate converse is of course false but I have not seen in the literature¹ any statement of the converse which is given below.

THEOREM 1. If p and q are coprime, q > 0, and if $|x-p/q| < 1/q^2$, then necessarily p/q is one of the three (irreducible) fractions

p'/q', (p' + p'')/(q' + q''), (p' - p'')/(q' - q''),

where p''/q'', p'/q' are two consecutive convergents to the irrational x. One at least of the two fractions $(p' + \epsilon p'')/(q' + \epsilon q'')$ where $\epsilon = \pm 1$ satisfies the inequality.

In other words if the inequality is satisfied, then

$$p/q = [a_1, a_2, \cdots, a_{n-1}, a_n + c], \qquad c = 0, \pm 1,$$

where $[a_1, a_2, \dots, a_r, \dots] = x$ is the infinite simple continued fraction for x, so that the a_i are integers, $a_i \ge 1$ $(i \ge 2)$.

Suppose that $x - p/q = \epsilon \theta/q^2$, $0 < \theta < 1$, $\epsilon = \pm 1$. Let

$$p/q = [b_1, b_2, \cdots, b_m], \quad p'/q' = [b_1, b_2, \cdots, b_{m-1}],$$

where *m* (which we can choose to be odd or even) is taken so that $(-1)^{m-1} = \epsilon$. Defining *y* by the equation

$$x = [b_1, b_2, \cdots, b_m, y] = (yp + p')/(yq + q'),$$

we obtain $\epsilon\theta = q^2(x-p/q) = (p'q-pq')q/(yq+q')$; so that, since $p'q-pq' = (-1)^{m-1} = \epsilon$, $y+q'/q = 1/\theta$.

Since $1/\theta > 1$ and q'/q < 1 it follows that y > 0.

If y>1, then $y=[b_{m+1}, b_{m+2}, \cdots]$ $(b_{m+1}\geq 1, \cdots)$, and so $x=[b_1, b_2, \cdots, b_m, b_{m+1}, \cdots]$, which, since the infinite simple continued fraction is unique, shows that $p/q=[b_1, \cdots, b_m]$ is the *m*th convergent to x. If however y<1, then $1/y=[c, b_{m+1}, b_{m+2}, \cdots]$ with $c\geq 1$. But $q/q'=[b_m, b_{m-1}, \cdots, b_2]$ and therefore one of c and b_m must be unity for, if not, then 1/y>2, q/q'>2, $y+q'/q<1<1/\theta$.

¹ Editor's note. In the meantime, R. M. Robinson has proved similar results in the Duke Mathematical Journal, vol. 7 (1940), pp. 354–359. Also the first part of Theorem 1 was observed by P. Fatou, Comptes Rendus de l'Académie des Sciences, Paris, vol. 139 (1904), pp. 1019–1021.