# CREMONA INVOLUTIONS DETERMINED BY TWO LINE CONGRUENCES 

## EDWIN J. PURCELL

1. Introduction. Recently, in this Bulletin, ${ }^{1}$ we discussed a multiple null-correspondence formed by two line congruences. The first congruence consisted in the lines intersecting a fixed twisted curve of order $m$ and also its ( $m-1$ )-secant $d$, and the second congruence consisted in the lines intersecting another twisted curve $\delta_{n}{ }^{\prime}$, of order $n$, and its ( $n-1$ )-secant $d^{\prime}$.

When $m=2$, the first curve is a conic $c_{2}$ having one point on $d$; a series of space Cremona involutions may now be defined as follows:

A generic point $P$ determines a ray $\rho_{1}$ of the first congruence and a ray $\rho^{\prime}$ of the second congruence. In the null-plane of $P$, formed by $\rho_{1}$ and $\rho^{\prime}$, lies another ray $\rho_{2}$ of the first congruence which intersects $\rho^{\prime}$ in $P^{\prime}$, the correspondent of $P$ in the involution.
2. The defining curves in general position. Let the equations of $d$ be $x_{1}=0, x_{2}=0$; and those of $d^{\prime}$ be $x_{3}=0, x_{4}=0$. Let the parametric equations of $c_{2}$ and of $\delta_{n}^{\prime}$ be, respectively,

$$
\begin{array}{ll}
x_{1}=\lambda^{2}, & x_{1}=f_{n}(s, t) \\
x_{2}=\lambda(\lambda-\mu), & x_{2}=F_{n}(s, t) \\
x_{3}=\lambda(\lambda-\mu), & x_{3}=\prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right)(a s+b t) \\
x_{4}=\mu^{2}, & x_{4}=\prod_{1}^{n-1}\left(t_{i} s-s_{i} t\right)(c s+d t)
\end{array}
$$

where $s_{i}, t_{i}$ are the values of the parameters of $\delta_{n}{ }^{\prime}$ at the $n-1$ points on $d^{\prime}$.

Then the equations of the involution are

$$
\begin{aligned}
& x_{1}^{\prime}=\left(x_{2}-x_{3}\right)\left(x_{1} F-x_{2} f\right)^{2}, \\
& x_{2}^{\prime}=\left(x_{1} F-x_{2} f\right) L, \\
& x_{3}^{\prime}=x_{3}\left\{\left(x_{2}-x_{3}\right)\left(x_{1} F-x_{2} f\right)\left(F-k H x_{2}\right)+\left(k H x_{1}-f\right) L\right\}, \\
& x_{4}^{\prime}=x_{4}\left\{\left(x_{2}-x_{3}\right)\left(x_{1} F-x_{2} f\right)\left(F-k H x_{2}\right)+\left(k H x_{1}-f\right) L\right\},
\end{aligned}
$$

where $\quad f \equiv f_{n}\left(d x_{3}-b x_{4}, \quad a x_{4}-c x_{3}\right), \quad k \equiv(a d-b c), \quad F \equiv F_{n}\left(d x_{3}-b x_{4}\right.$,

[^0]
[^0]:    ${ }^{1}$ E. J. Purcell, A multiple null-correspondence and a space Cremona involution of order $2 n-1$, this Bulletin, vol. 46 (1940), pp. 339-344.

