NOTE ON A THEOREM ON QUADRATIC RESIDUES

KAI-LAI CHUNG

In this note we shall give a short proof of a known result:
Theorem. For every prime $p \equiv 3(\bmod 4)$ there are more quadratic residues $\bmod p$ between 0 and $p / 2$ than there are between $p / 2$ and p.

An equivalent statement of this theorem is as follows (see E. Landau, Vorlesungen über Zahlentheorie, vol. 1, p. 129):

Für $p \equiv 3(\bmod 4)$ haben mehr unter den Zahlen $1^{2}, 2^{2}, \cdots,(p-1)^{2} / 4$ ihren Divisionsrest mod p unter $p / 2$ als über $p / 2$.

For proof we shall use Fourier series with one of its applications, namely Gaussian sums.

Write $s^{2}=q p+r, 0 \leqq r<p$, so that

$$
\left[\frac{s^{2}}{p}\right]=q .
$$

It is evident that we have

$$
\left[\frac{2 s^{2}}{p}\right]-2\left[\frac{s^{2}}{p}\right]=\left\{\begin{array}{lll}
0 & \text { if } & r<p / 2 \\
1 & \text { if } & r>p / 2
\end{array}\right.
$$

Therefore we have to prove that $\sum_{s=1}^{(p-1) / 2}\left(\left[2 s^{2} / p\right]-2\left[s^{2} / p\right]\right)<(p-1) / 4$, or $\leqq(p-1) / 4$ since $p \equiv 3(\bmod 4)$.

By a well known expansion in Fourier series, we have

$$
x-[x]-\frac{1}{2}=-\sum_{n=1}^{\infty} \frac{\sin 2 n \pi x}{n \pi}
$$

so that

$$
\lfloor x\rfloor=x-\frac{1}{2}+\sum_{n=1}^{\infty} \frac{\sin 2 n \pi x}{n \pi}
$$

Substituting, we get

$$
\begin{aligned}
{\left[\frac{2 s^{2}}{p}\right]-2\left[\frac{s^{2}}{p}\right]=} & \frac{2 s^{2}}{p}-\frac{1}{2}+\sum_{n=1}^{\infty} \frac{\sin \left(4 n \pi s^{2} / p\right)}{n \pi} \\
& -2\left\{\frac{s^{2}}{p}-\frac{1}{2}+\sum_{n=1}^{\infty} \frac{\sin \left(2 n \pi s^{2} / p\right)}{n \pi}\right\} \\
= & \frac{1}{2}+\sum_{n=1}^{\infty} \frac{1}{n \pi}\left\{\sin \frac{4 n \pi s^{2}}{p}-2 \sin \frac{2 n \pi s^{2}}{p}\right\}
\end{aligned}
$$

