NOTE ON A THEOREM ON QUADRATIC RESIDUES
KAI-LAI CHUNG
In this note we shall give a short proof of a known result:

THEOREM. For every prime p=3 (mod 4) there are more quadratic
residues mod p between 0 and p/2 than there are between p/2 and p.

An equivalent statement of this theorem is as follows (see E. Lan-
dau, Vorlesungen iiber Zahlentheorie, vol. 1, p. 129):

Fiir p=3 (mod 4) haben mehr unter den Zahlen 12,22, - - -, (p—1)%/4
ihren Divisionsrest mod p unter p/2 als iiber p/2.

For proof we shall use Fourier series with one of its applications,
namely Gaussian sums.
Write s2=¢p+r, 0=r<p, so that
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Therefore we have to prove that Y2 7"2([2s2/p] —2[s2/p]) < (p—1)/4,

or =(p—1)/4 since p=3 (mod 4).
By a well known expansion in Fourier series, we have
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Substituting, we get
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