NOTE ON A THEOREM ON QUADRATIC RESIDUES

KAI-LAI CHUNG

In this note we shall give a short proof of a known result:

THEOREM. For every prime $p \equiv 3 \pmod{4}$ there are more quadratic residues mod p between 0 and p/2 than there are between p/2 and p.

An equivalent statement of this theorem is as follows (see E. Landau, Vorlesungen über Zahlentheorie, vol. 1, p. 129):

Für $p \equiv 3 \pmod{4}$ haben mehr unter den Zahlen $1^2, 2^2, \dots, (p-1)^2/4$ ihren Divisionsrest mod p unter p/2 als über p/2.

For proof we shall use Fourier series with one of its applications, namely Gaussian sums.

Write $s^2 = qp + r$, $0 \le r < p$, so that

$$\left[\frac{s^2}{p}\right] = q.$$

It is evident that we have

$$\left[\frac{2s^2}{p}\right] - 2\left[\frac{s^2}{p}\right] = \begin{cases} 0 & \text{if } r < p/2; \\ 1 & \text{if } r > p/2. \end{cases}$$

Therefore we have to prove that $\sum_{s=1}^{(p-1)/2} ([2s^2/p] - 2[s^2/p]) < (p-1)/4$, or $\leq (p-1)/4$ since $p \equiv 3 \pmod{4}$.

By a well known expansion in Fourier series, we have

$$x - [x] - \frac{1}{2} = -\sum_{n=1}^{\infty} \frac{\sin 2n\pi x}{n\pi},$$

so that

$$[x] = x - \frac{1}{2} + \sum_{n=1}^{\infty} \frac{\sin 2n\pi x}{n\pi}$$
.

Substituting, we get

$$\left[\frac{2s^2}{p}\right] - 2\left[\frac{s^2}{p}\right] = \frac{2s^2}{p} - \frac{1}{2} + \sum_{n=1}^{\infty} \frac{\sin(4n\pi s^2/p)}{n\pi} - 2\left\{\frac{s^2}{p} - \frac{1}{2} + \sum_{n=1}^{\infty} \frac{\sin(2n\pi s^2/p)}{n\pi}\right\}$$
$$= \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{n\pi} \left\{\sin\frac{4n\pi s^2}{p} - 2\sin\frac{2n\pi s^2}{p}\right\};$$
$$514$$