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In this note we shall give a short proof of a known result: 

THEOREM. For every prime p^3 (mod 4) there are more quadratic 
residues mod p between 0 and p/2 than there are between p/2 and p. 

An equivalent statement of this theorem is as follows (see E. Lan
dau, Vorlesungen ilber Zahlentheorie, vol. 1, p. 129): 

Für p = 3 (mod 4) hoben mehr unter den Zahlen l2, 22, • • • , (p —1)2/4 
ihren Divisionsrest mod p unter p/2 als Uber p/2. 

For proof we shall use Fourier series with one of its applications, 
namely Gaussian sums. 

Write s2 = qp+r, 0^r<p, so that 
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It is evident that we have 
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(0 if r<p/2; 

if r > p/2. 

Therefore we have to prove tha t ]C£; 1 ) / 2 ( [2s2/p ] - 2 [s2/p]) < (p -1)/4, 
or ^ ( £ —l)/4 since p = 3 (mod 4). 

By a well known expansion in Fourier series, we have 
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Substituting, we get 

2s2 * sin (4:mrs2/p) 
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