ON THE SIMULTANEOUS APPROXIMATION OF TWO REAL NUMBERS ${ }^{1}$

RAPHAEL M. ROBINSON

If $\xi_{1}, \xi_{2}, \cdots, \xi_{n}$ are any real numbers and t is a positive integer, then it is well known that integers $a_{1}, a_{2}, \cdots, a_{n}, b$ can be found, such that $0<b \leqq t^{n}$ and

$$
\left|b \xi_{k}-a_{k}\right|<1 / t, \quad k=1,2, \cdots, n .
$$

The proof is briefly the following. ${ }^{2}$ Consider the $t^{n}+1$ points $\left(r \xi_{1}, r \xi_{2}, \cdots, r \xi_{n}\right)$, where $r=0,1, \cdots, t^{n}$. Reduce $\bmod 1$ to congruent points in the unit cube ($0 \leqq x_{1}<1, \cdots, 0 \leqq x_{n}<1$). If this cube is divided into t^{n} cubes of edge $1 / t$ (including the lower boundaries), then at least one of these small cubes must contain two of the reduced points, say those with $r=r^{\prime}$ and $r=r^{\prime \prime}$. With $b=\left|r^{\prime}-r^{\prime \prime}\right|$ and suitable a 's, we evidently satisfy the required inequalities.

For $n=1$, the inequality can be sharpened to

$$
|b \xi-a| \leqq 1 /(t+1),
$$

b satisfying the condition $0<b \leqq t$. For if we consider the points $r \xi$ ($r=0,1, \cdots, t$), and mark the points in the interval $0 \leqq x \leqq 1$ which are congruent to them $\bmod 1$, we have at least $t+2$ points marked, since corresponding to $r=0$ we mark both 0 and 1 . Some two of the marked points must lie within a distance $1 /(t+1)$ from each other, so that the desired conclusion follows. This is the best result, as the example $\xi=1 /(t+1)$ shows.

The present note solves the corresponding problem for $n=2$. For larger values of n the problem appears more difficult.

Theorem. If ξ_{1} and ξ_{2} are any real numbers, and sis a positive integer, then integers a_{1}, a_{2}, b can be found, such that $0<b \leqq s$, and

$$
\left|b \xi_{k}-a_{k}\right| \leqq \max \left(\frac{\left[s^{1 / 2}\right]}{s+1}, \frac{1}{\left[s^{1 / 2}\right]+1}\right), \quad k=1,2 .
$$

For every s, values of ξ_{1} and ξ_{2} can be found for which the inequalities could not both be satisfied if the equality sign were omitted.

[^0]
[^0]: ${ }^{1}$ Presented to the Society, November 23, 1940.
 ${ }^{2}$ The method used in this proof (Schubfachprinzip or "pigeonhole principle") was first used by Dirichlet in connection with a similar problem. We sketch the proof here in order to compare it with the proof of the theorem below, which also uses that method.

