CESȦRO SUMMABILITY OF A CLASS OF SERIES

M. S. MACPHAIL

The following theorem has recently been proved by H. L. Garabedian: ${ }^{1}$ If a_{n} is a polynomial in n of degree $k-1$, the series $\sum_{\substack{n \\ \sum_{n}=0 \\ n}}(-1)^{n} a_{n}$ is summable (C, k) but not $(C, k-1)$ to the value $\sum_{i=0}^{k-1} 2^{-i-1} \Delta^{i} a_{0}$. Here and elsewhere in this paper k is understood to be a fixed positive integer.

Our present object is to obtain some extensions of this result. One of these may be stated at once, the proof being given at the end of the paper.

Theorem 2. Let a_{n} be a polynomial in n of degree $k-1$, and let z be a complex number such that $|z|=1, z \neq 1$. Then the series $\sum_{n=0}^{\infty} a_{n} z^{n}$ is summable (C, k) but not $(C, k-1)$ to the value $-\sum_{m=0}^{k-1} z^{m}(z-1)^{-m-1} \Delta^{m} a_{0}$.

Before stating our first theorem we require the following definitions. Let f_{n} be a periodic function of the integer n; that is to say, let there be an integer p such that $f_{n+p}=f_{n}$ for all values of n. Let $M(f)$ denote the mean value of f_{n} over a period, thus $M(f)=(1 / p) \sum_{n=0}^{p-1} f_{n}$. Suppose now that f_{n} is a periodic function of mean value zero; that is, let $M(f)=0$. Writing $f(n), a(n)$ in place of f_{n}, a_{n}, set

$$
\begin{array}{lll}
f_{1}(n)=\sum_{j=0}^{n} f(j), & c_{1}=M\left(f_{1}\right), & F_{1}(n)=f_{1}(n)-c_{1} \\
f_{2}(n)=\sum_{j=0}^{n} F_{1}(j), & c_{2}=M\left(f_{2}\right), & F_{2}(n)=f_{2}(n)-c_{2} \tag{a}\\
f_{3}(n)=\sum_{j=0}^{n} F_{2}(j), & c_{3}=M\left(f_{3}\right), & F_{3}(n)=f_{3}(n)-c_{3}
\end{array}
$$

and so on; this procedure ensures that $F_{i}(n)$ is periodic with mean value zero ($i=1,2, \cdots$). In terms of these definitions we prove the following theorem:

Theorem 1. Let $a(n)$ be a polynomial in n of degree $k-1$, and $f(n) a$ periodic function with mean value zero. Then the series $\sum_{n=0}^{\infty} f(n) a(n)$ is summable (C, k) but not $(C, k-1)$ to the value $\sum_{i=0}^{k-1} c_{i+1} \Delta^{i} a_{0}$.

If $f(n)=(-1)^{n}$ it is easily verified that $c_{i+1}=2^{-i-1}$, which shows

[^0]
[^0]: ${ }^{1}$ This Bulletin, vol. 45 (1939), pp. 592-596. In the theorem as here stated it is required that a_{n} satisfy the conditions $\Delta^{k-1} a_{0} \neq 0, \Delta^{i} a_{0}=0(i \geqq k)$. It is easily seen that this is equivalent to requiring a_{n} to be a polynomial in n of degree $k-1$.

