The corresponding expression for what I call the type A deriva-tive-based on another, but equally logical definition-is merely the first term of the above expression.

Columbia University

ON THE ASYMPTOTIC LINES OF A RULED SURFACE

GUIDO FUBINI

Many mathematicians have studied the surfaces every asymptotic curve of which belongs to a linear complex. I will here be content with the results given on pages 112-116 and 266-288 of a treatise ${ }^{1}$ written by myself and Professor A. Cech. This treatise gives (p.113) a very simple proof of the following theorem:

If every non-rectilinear asymptotic curve of a ruled surface S belongs to a linear complex, all these asymptotic curves are projective to each other.

We will find all the ruled surfaces, the non-rectilinear asymptotic curves of which are projective to each other, and prove conversely that every one of these asymptotic curves belongs to a linear complex. If c, c^{\prime} are two of these asymptotic curves and if A is an arbitrary point of c, we can find on c^{\prime} a point A^{\prime} such that the straight line $A A^{\prime}$ is a straight generatrix of S. The projectivity, which, according to our hypothesis, transforms c into c^{\prime}, will carry A into a point A_{1} of c^{\prime}. We will prove that the two points A^{\prime} and A_{1} are identical; but this theorem is not obvious and therefore our demonstration cannot be very simple. The generalization to nonruled surfaces seems to be rather complicated: and we do not occupy ourselves here with such a generalization.

If the point $x=x(u, v)$ generates a ruled surface S, for which $u=$ const. and $v=$ const. are asymptotic curves, we can suppose (loc. cit., p. 182)

$$
\begin{equation*}
x=y+u z \tag{1}
\end{equation*}
$$

in which y and z are functions of v. More clearly, if $x_{1}, x_{2}, x_{3}, x_{4}$ are homogeneous projective coordinates of a point of S, we can find eight functions y_{i} and z_{i} of v such that

$$
\begin{equation*}
x_{i}=y_{i}(v)+u z_{i}(v), \quad i=1,2,3,4 \tag{bis}
\end{equation*}
$$

From the general theory of surfaces, it is known (loc. cit., p. 90) that

[^0]
[^0]: ${ }^{1}$ Geometria Proiettiva Differenziale, Bologna, Zanichelli.

