ON SPHERICAL CYCLES¹

SAMUEL EILENBERG

Given a metric separable space Υ , we consider the homology group $B^n(\Upsilon)$ obtained using *n*-dimensional singular cycles in Υ with integer coefficients. Every continuous mapping $f \in \Upsilon^{S^n}$ of the oriented *n*-dimensional sphere S^n into Y defines uniquely an element h(f) of $B^n(\Upsilon)$. Clearly if $f_0, f_1 \in \Upsilon^{S^n}$ are two homotopic mappings, then $h(f_0) = h(f_1)$.

The homology classes h(f) will be called *spherical homology classes*. A cycle will be called *spherical* if its homology class is spherical.²

THEOREM 1. If Υ is arcwise connected, the spherical homology classes form a subgroup of $B^n(\Upsilon)$.

Let $p \in S^n$, $q \in \Upsilon$, and let $S^n = S_+^n + S_-^n$ be a decomposition of S^n into two hemispheres such that $p \in S_+^n \cdot S_-^n$. Consider $f_0, f_1 \in \Upsilon^{S^n}$. It is well known that, replacing if necessary f_0 and f_1 by homotopic mappings, we may assume that $f_0(S_+^n) = q$ and that $f_1(S_-^n) = q$. Defining $f = f_0$ on S_-^n and $f = f_1$ on S_+^n we clearly have

$$f \in \Upsilon^{S^n}$$
, $h(f) = h(f_0) + h(f_1)$.

The homology class $h(f_0) + h(f_1)$ is therefore spherical.

Let M^r be an *r*-dimensional (finite or infinite) manifold³ and P^{r-n-1} (n>0) an at most (r-n-1)-dimensional subpolyhedron of M^r .

THEOREM 2. Every n-dimensional cycle γ^n in $M^r - P^{r-n-1}$ such that $\gamma^n \sim 0$ in M^r is spherical (with respect to $M^r - P^{r-n-1}$).

Let a^{r-n-1} be an (r-n-1)-dimensional simplex of M^r and b^{n+1} the (n+1)-cell dual to it. The boundary ∂b^{n+1} is contained in $M^r - P^{r-n-1}$ and is a spherical cycle. Since $M^r - P^{r-n-1}$ is connected, the spherical homology classes of $B^n(M^r - P^{r-n-1})$ form a group. It follows that each cycle of the form

(*)
$$\partial \left(\sum_{i} \alpha_{i} b_{i}^{n+1} \right)$$

is a spherical cycle with respect to $M^r - P^{r-n-1}$. The cycle γ^n is homologous in $M^r - P^{r-n-1}$ to a cycle of the form (*). Therefore γ^n is spherical.

¹ Presented to the Society, April 13, 1940.

² Spherical cycles were considered by W. Hurewicz, Proceedings, Akademie van Wetenschappen te Amsterdam, vol. 38 (1935), pp. 521–528.

³ See K. Reidemeister, Topologie der Polyeder, Leipzig, 1938, p. 151.