ON BIORTHOGONAL MATRICES ${ }^{1}$

Y. K. WONG

Introduction. Consider the basis consisting of a number system \mathfrak{A} of type D, two general ranges $\mathfrak{P}^{1}, \mathfrak{P}^{2}$, and two positive hermitian matrices $\boldsymbol{\epsilon}^{1}, \boldsymbol{\epsilon}^{2}$. We introduce two binary relations for pairs of nonmodular matrices. The matrices κ^{12}, ϕ^{21} are said to be contraceding as to $\epsilon^{1} \epsilon_{\mathrm{k}}^{2}, \epsilon^{2}$ in case κ^{12}, ϕ^{21} are by columns of $\mathfrak{M}\left(\epsilon^{1}\right), \mathfrak{M}\left(\epsilon^{2}\right)$ respectively and such that $J^{2 \kappa} \kappa^{12} \mu^{2}=J^{2} \phi^{* 12} \mu^{2}$ for every μ^{2} in the set $\mathfrak{M}\left(\epsilon_{\kappa}^{2} \cap \epsilon^{2}\right)$. It is evident that when κ^{12} is of type $\mathfrak{M}\left(\epsilon^{1}\right) \overline{\mathfrak{M}}\left(\epsilon^{2}\right)$, then the contracedence property implies that $J^{2} \kappa^{12} \phi^{21}=\epsilon_{\kappa}^{1}$ but not conversely. The main results are stated in Theorems 2 and 3 . We next consider $\epsilon_{0}^{1}, \epsilon_{1}^{1}$ both idempotent as to ϵ^{1}. Suppose that κ^{12} is by columns of $\mathfrak{M}\left(\epsilon_{0}^{1}\right)$ and ϕ^{21} is by rows-conjugate of $\mathfrak{M}\left(\epsilon_{1}^{1}\right)$. Take any pair of vectors μ^{1}, ν^{1} modular as to $\epsilon_{0}^{1}, \epsilon_{1}^{1}$ respectively such that $J^{1} \kappa^{* 21} \mu^{1}, J^{1} \phi^{21} \nu^{1}$ are in $\mathfrak{M}\left(\epsilon^{2}\right)$. If $J^{1} \bar{\mu}^{1} \nu^{1}$ is equal to the inner product $J^{2}\left(J^{1} \bar{\mu}^{1} \kappa^{12}, J^{1} \phi^{21} \nu^{1}\right)$, then κ^{12}, ϕ^{21} are said to be biorthogonal as to $\epsilon^{1} \epsilon_{0}^{1} \epsilon_{1}^{1} \epsilon^{2}$. When $\epsilon_{1}^{1}=\epsilon_{0}^{1}$, then κ^{12}, ϕ^{21} are said to be biorthogonal as to $\epsilon^{1} \epsilon_{0}^{1} \epsilon^{2}$ in case they are biorthogonal as to $\epsilon^{1} \epsilon_{0}^{1} \epsilon_{0}^{1} \epsilon^{2}$. With proper restrictions imposed upon κ^{12}, ϕ^{21}, we obtain the contracedence property. In a later paper, we shall establish the relations of biorthogonality and a certain mode of interchange of integration processes.

1. Preliminary results. Consider the basis $\mathfrak{N}, \mathfrak{B}^{1}, \mathfrak{B}^{2}, \epsilon^{1}$, and κ^{12} which is by columns of $\mathfrak{M}\left(\epsilon^{1}\right)$. E. H. Moore's generalized Fourier processes give $\epsilon_{\kappa}^{2} \equiv J^{1} \kappa^{* 21} \kappa^{12}$ and $\epsilon_{\kappa}^{1} \equiv J^{2 \kappa} \kappa^{12} \kappa^{* 21}$. The spaces $\mathfrak{M}\left(\epsilon_{\kappa}^{1}\right)$ and $\mathfrak{M}\left(\epsilon_{\kappa}^{2}\right)$ are in one-to-one correspondence (denoted by $\left.\leftrightarrow\right)$ via the transformations $J^{1} \kappa^{* 21}$ and $J^{2 \kappa} \kappa^{12}$, and the correspondences are orthogonal in the sense that the moduli of the corresponding vectors are preserved. ${ }^{2}$
$(A)^{3}$ Suppose that $\mathfrak{M}_{1}\left(\epsilon_{\kappa}^{1}\right) \leftrightarrow \mathfrak{M}_{1}\left(\epsilon_{\kappa}^{2}\right)$ and $\mathfrak{M}_{2}\left(\epsilon_{\kappa}^{1}\right) \leftrightarrow \mathfrak{M}_{2}\left(\epsilon_{\kappa}^{2}\right)$ via the transformations $J^{1} \kappa^{* 21}, J^{2 \kappa} \kappa^{12}$. Then $\mathfrak{M}_{1}\left(\epsilon_{\kappa}^{1}\right)$ is a subset of $\mathfrak{M}_{2}\left(\epsilon_{\kappa}^{1}\right)$ if and only if $\mathfrak{M}_{1}\left(\epsilon_{\kappa}^{2}\right)$ is a subset of $\mathfrak{M}_{2}\left(\epsilon_{\kappa}^{2}\right) ; \mathfrak{M}_{1}\left(\epsilon_{\kappa}^{1}\right)$ is linearly J^{1}-closed if and only if $\mathfrak{M}_{1}\left(\epsilon_{k}^{2}\right)$ is linearly $J^{2 k_{k}}$-closed; and $\mathfrak{M}_{1}\left(\epsilon_{k}^{1}\right)$ is everywhere dense in $\mathfrak{M}_{2}\left(\epsilon_{\kappa}^{1}\right)$ if and only if $\mathfrak{M}_{1}\left(\epsilon_{\kappa}^{2}\right)$ is everywhere dense in $\mathfrak{M}_{2}\left(\epsilon_{\kappa}^{2}\right)$.
[^0]
[^0]: ${ }^{1}$ Presented to the Society, June 20, 1940.
 ${ }^{2}$ For a concise outline of Moore's generalized Fourier theory and its related topics, see Moore, General Analysis, I, pp. 19-26. For an important classical instance, see E. Schmidt, Über die Auflösung linearer Gleichungen mit unendlichvielen Unbekannten, Rendiconti del Circolo Matematico di Palermo, vol. 25 (1908), pp. 56-77.
 ${ }^{3}$ For the demonstrations of the following results, see the author's forthcoming paper On non-modular matrices.

